Informative cluster size in observational studies

Aya Mitani

November 1, 2019

Research Fellow, Department of Biostatistics, Harvard Chan School of Public Health

- Background and Motivation
- Marginal analysis of multiple correlated outcomes with ICS
- $\bullet~$ ICS in HIV/STD research
- ICS in other settings

Periodontal Disease

- Inflammatory disease affecting gums and bones surrounding teeth
- Progress is measured by many factors including clinical attachment loss (CAL)
- Mild periodontal disease swollen and bleeding gums
- Severe periodontal disease loosening teeth and teeth loss

Periodontal Disease

- Affects 30-50% of adult population in US
- Associated with
 - Age
 - Smoking
 - Low SES
 - Cardiovascular disease
 - Diabetes
 - HIV
 - ? Metabolic syndrome or MetS (Presence of \geq 3 of the 5 following metabolic risk factors)
 - 1. Large waistline (\geq 102 cm)
 - 2. High triglyceride level (\geq 150 mg/dl)
 - 3. Low HDL cholesterol level (<40 mg/dl)
 - 4. High blood pressure (SBP \geq 130 or DBP \geq 85 mmHg)
 - 5. High fasting blood sugar (${\geq}100~\text{mg/dL}$ or antidiabetic drug use)

Periodontal Disease

ABL: Alveolar bone loss; CAL: Clinical attachment loss; Mobil: Mobility; PPD: Probing pocket depth

No universal definition of advanced periodontal disease

	Periodontal disease outcomes			
	ABL	CAL	Mobil	PPD
	0: None			
Oudiant	1: <20%	0: <2mm	0: None	0: <2mm
	2: 20-39%	1: 2-2.9mm	1: <0.5mm	1: 2-2.9mm
Orumai score	3: 40-59%	2: 3-4.9mm	2: 0.5-0.9mm	2: 3-4.9mm
	4: 60-79%	3: ≥5mm	3: ≥1mm	3: ≥5mm
	5: ≥80%			

ABL: Alveolar bone loss CAL: Clinical attachment loss Mobil: Mobility PPD: Probing pocket depth
 Table 1: Description of Veterans Affairs Dental Longitudinal Study

 (1981-2011)

Number of subjects	760
Percentage of Men	100%
Number of visits per subject	1-11
Subject-level baseline variables	Age, Education, etc.
Subject-level time-varying variables	MetS, Smoking, etc.
Tooth-level variables	PPD, CAL, ABL, Mobil
Baseline number of teeth per subject	1-28

Kaye et al, 2016

What is the relationship between periodontal disease and MetS?

Overall research question

What is the relationship between periodontal disease and MetS?

Marginal models for clustered data

Notation

- *i* = 1, ..., *N* Subjects
- $j = 1, ..., n_i$ teeth for *i*th subject at baseline
- $\mu_i = E(Y_i | X_i)$ where $Y_i = (Y_{i1}, Y_{i2}, ..., Y_{in_i})'$

Generalized estimating equations (GEE) $\sum_{i=1}^{N} \frac{\partial \mu_i}{\partial \beta}' V_i^{-1} (Y_i - \mu_i) = 0$

where $V_i = A_i^{1/2} R_i A_i^{1/2}$ and A_i is the diagonal matrix of variance $\mu_i(1 - \mu_i)$ and R_i is the working correlation matrix

Marginal models for clustered data

Notation

- *i* = 1, ..., *N* Subjects
- $j = 1, ..., n_i$ teeth for *i*th subject at baseline
- $\mu_i = E(Y_i | X_i)$ where $Y_i = (Y_{i1}, Y_{i2}, ..., Y_{in_i})'$

Generalized estimating equations (GEE) $\sum_{i=1}^{N} \frac{\partial \mu_i}{\partial \beta}' V_i^{-1} (Y_i - \mu_i) = 0$

where $V_i = A_i^{1/2} R_i A_i^{1/2}$ and A_i is the diagonal matrix of variance $\mu_i(1 - \mu_i)$ and R_i is the working correlation matrix

Assumption of GEE

Independence between cluster size (number of teeth per subject, n_i) and outcome

Informative cluster size

Figure 1: Baseline number of teeth vs. mean CAL score Pearson correlation coefficient = -0.470 (-0.553, -0.378)

What is informative cluster size (ICS)?

- Cluster size (number of teeth per subject, n_i) varies
- Outcome (CAL) is not independent of cluster size (number of teeth) given the exposure (MetS)

$$E(Y_i|X_i = x_i, n_i) \neq E(Y_i|X_i = x_i)$$

Issues with informative cluster size (ICS)

- Standard methods for clustered data analysis assume independence between outcome and cluster size
- When assumption is violated, analysis may result in biased estimates

Hoffman et al, 2001

CWGEE for cross-sectional data

$$\sum_{i=1}^{N} \frac{1}{n_i} \sum_{j=1}^{n_i} \frac{\partial \mu_{ij}}{\partial \beta} V_{ij}^{-1} (Y_{ij} - \mu_{ij}) = 0$$

•
$$E(\hat{\beta}_{CWGEE}) = \beta$$

•
$$\sqrt{N}(\hat{\beta}_{CWGEE} - \beta) \xrightarrow{d} MN(\mathbf{0}, \boldsymbol{B}^{-1}\boldsymbol{M}\boldsymbol{B}^{-1})$$
 where

•
$$\boldsymbol{B} = \sum_{i=1}^{N} \frac{1}{n_i} \sum_{j=1}^{n_i} \frac{\partial \mu_{ij}}{\partial \beta}' V_{ij}^{-1} \frac{\partial \mu_{ij}}{\partial \beta}$$

•
$$\boldsymbol{M} = \sum_{i=1}^{N} \left[\frac{1}{n_i} \sum_{j=1}^{n_i} \frac{\partial \mu_{ij}}{\partial \beta}' V_{ij}^{-1} (Y_{ij} - \mu_{ij}) \right] \left[\frac{1}{n_i} \sum_{j=1}^{n_i} \frac{\partial \mu_{ij}}{\partial \beta}' V_{ij}^{-1} (Y_{ij} - \mu_{ij}) \right]'$$

Williamson et al, 2003

GEE with independence working correlation

- Inference for population of all units
- Larger clusters contribute more to inference than smaller ones
- May be preferred in economic assessment of how many, and which, teeth among patients seen at dental clinic require costly intervention

CWGEE

- Inference for typical unit of typical cluster
- All clusters contribute to inference equally
- May be preferred in study of patient factors linked to disease status of teeth

Informative cluster size

$$\mathsf{Perio} = \begin{cases} 1 & \text{if } \mathsf{ABL} \geq 40\% \text{ and } \mathsf{CAL}/\mathsf{PPD} \geq 5\mathsf{mm} \text{ and } \mathsf{Mobil} \geq 0.5\mathsf{mm} \\ 0 & \text{otherwise} \end{cases}$$

$$\mathsf{Perio} = \begin{cases} 1 & \text{if ABL} \geq 40\% \text{ and } \mathsf{CAL}/\mathsf{PPD} \geq 5\mathsf{mm} \text{ and } \mathsf{Mobil} \geq 0.5\mathsf{mm} \\ 0 & \text{otherwise} \end{cases}$$

- How to define single outcome?
- Can obscure true effect

$$\mathsf{Perio} = \begin{cases} 1 & \text{if ABL} \geq 40\% \text{ and } \mathsf{CAL}/\mathsf{PPD} \geq 5\mathsf{mm} \text{ and } \mathsf{Mobil} \geq 0.5\mathsf{mm} \\ 0 & \text{otherwise} \end{cases}$$

- How to define single outcome?
- Can obscure true effect
- Use four separate models, one for each outcome

$$\mathsf{Perio} = \begin{cases} 1 & \text{if ABL} \ge 40\% \text{ and } \mathsf{CAL}/\mathsf{PPD} \ge 5\mathsf{mm} \text{ and } \mathsf{Mobil} \ge 0.5\mathsf{mm} \\ 0 & \text{otherwise} \end{cases}$$

- How to define single outcome?
- Can obscure true effect
- Use four separate models, one for each outcome
 - Ignores correlation between outcomes
 - Need to correct for multiple comparison

$$\mathsf{Perio} = \begin{cases} 1 & \text{if ABL} \ge 40\% \text{ and } \mathsf{CAL}/\mathsf{PPD} \ge 5\mathsf{mm} \text{ and } \mathsf{Mobil} \ge 0.5\mathsf{mm} \\ 0 & \text{otherwise} \end{cases}$$

- How to define single outcome?
- Can obscure true effect
- Use four separate models, one for each outcome
 - Ignores correlation between outcomes
 - Need to correct for multiple comparison
- Multivariate approach to jointly analyze all outcomes in one model

Three dichotomized periodontal disease outcomes

	Periodontal disease outcomes			
	ABL	CAL	Mobil	
Dichotomized score	0: <40%	0: <5mm	0: <0.5mm	
Dichotomized score	1: \geq 40%	1: \geq 5mm	1: \geq 0.5mm	

ABL: Alveolar bone loss CAL: Clinical attachment loss Mobil: Mobility

Method

- i = 1, ..., N Subjects
- $j = 1, ..., n_i$ teeth for *i*th subject at baseline
- k = 1, 2, 3 outcome variables
- Y_{ijk} is *k*th binary outcome for *j*th tooth of *i*th subject,

$$Y_{ij}=(Y_{ij1},Y_{ij2},Y_{ij3})$$

- X_i is subject-level predictor
- $\mu_{ijk} = \Pr(Y_{ijk} = 1)$

General model

$$\begin{aligned} \log it(\mu_{ij1}) &= a_1 + X_i\beta, \\ \log it(\mu_{ij2}) &= a_2 + X_i(\beta + \beta_{12}), \\ \log it(\mu_{ij3}) &= a_3 + X_i(\beta + \beta_{13}). \end{aligned} \tag{1}$$

Hypothesis test

$$H_0: \beta_{12} = \beta_{13} = 0$$

Method

- i = 1, ..., N Subjects
- $j = 1, ..., n_i$ teeth for *i*th subject at baseline
- k = 1, 2, 3 outcome variables
- Y_{ijk} is kth outcome for *j*th tooth of *i*th subject, $Y_{ij} = (Y_{ij1}, Y_{ij2}, Y_{ij3})$
- X_i is subject-level predictor
- $\mu_{ijk} = \Pr(Y_{ijk} = 1)$

Parsimonious model

$$logit(\mu_{ij1}) = a_1 + X_i\beta,$$

$$logit(\mu_{ij2}) = a_2 + X_i\beta,$$

$$logit(\mu_{ij3}) = a_3 + X_i\beta.$$

(2)

How to model correlation between outcomes?

Generalized sum of squares for error

$$Q_{GEE} = \sum_{i=1}^{N} \sum_{j=1}^{n_i} Z_{ij} R_{ij}(\alpha)^{-1} Z_{ij}^T$$

where $Z_{ij} = (Y_{ij} - \mu_{ij})/\sqrt{\mu_{ij}(1 - \mu_{ij})}$ and $R_{ij}(\alpha)$ is correlation matrix between outcomes (Chaganty & Shults, 1999)

How to model correlation between outcomes?

Generalized sum of squares for error

$$Q_{GEE} = \sum_{i=1}^{N} \sum_{j=1}^{n_i} Z_{ij} R_{ij}(\alpha)^{-1} Z_{ij}^T$$

where $Z_{ij} = (Y_{ij} - \mu_{ij})/\sqrt{\mu_{ij}(1 - \mu_{ij})}$ and $R_{ij}(\alpha)$ is correlation matrix between outcomes (Chaganty & Shults, 1999)

Cluster weighted generalized sum of squares for error

$$Q_{CWGEE} = \sum_{i=1}^{N} \frac{1}{n_i} \sum_{j=1}^{n_i} Z_{ij} R_{ij}(\alpha)^{-1} Z_{ij}^T$$

Method

How to model correlation between outcomes?

Estimation of β

 $rac{\partial Q(m{eta},m{lpha})}{\partial m{eta}} = 0 \Rightarrow$

$$U_{CWGEE}(\beta,\alpha) = \sum_{i=1}^{N} \frac{1}{n_i} \sum_{j=1}^{n_i} \frac{\partial \mu_{ij}}{\partial \beta}' V_{ij}(\alpha)^{-1} (Y_{ij} - \mu_{ij}) = 0$$
(3)

Estimation of
$$\alpha$$

$$\frac{\partial Q(\beta,\alpha)}{\partial \alpha} = 0 \Rightarrow$$

$$\sum_{i=1}^{N} \frac{1}{n_i} \sum_{i=1}^{n_i} Z_{ij} \frac{\partial R_{ij}(\alpha)^{-1}}{\partial \alpha} Z_{ij}^{T} = 0$$
(4)

Iterate between Equations (3) and (4) until convergence.

Method

Working correlation structures for $R_{ij}(\alpha)$

1. Unstructured:

$$\mathsf{R}_{ij}(\alpha) = \left(\begin{array}{ccc} 1 & \alpha_{12} & \alpha_{13} \\ \alpha_{12} & 1 & \alpha_{23} \\ \alpha_{13} & \alpha_{23} & 1 \end{array}\right)$$

2. Exchangeable:

$${\cal R}_{ij}(lpha) = \left(egin{array}{ccc} 1 & lpha & lpha \ lpha & 1 & lpha \ lpha & lpha & 1 \end{array}
ight)$$

3. Independence:

$$R_{ij}(\alpha) = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

Analysis

VA Dental Longitudinal Study (Baseline)

- N = 760 subjects
- 1-28 teeth per subject
- K = 3 binary outcomes: CAL \geq 5mm, ABL \geq 40%, Mobil \geq 0.5mm
- Subject-level predictors: $\boldsymbol{X}_{i} = (X'_{Age}, X'_{Smoking}, X'_{Education}, X'_{MetS})$

General model

$$\begin{aligned} \text{logit}(\mu_{ij\text{CAL}}) &= a^{\text{CAL}} + \boldsymbol{X}_{i}\boldsymbol{\beta} \\ \text{logit}(\mu_{ij\text{ABL}}) &= a^{\text{ABL}} + \boldsymbol{X}_{i}(\boldsymbol{\beta} + \boldsymbol{\beta}^{\text{ABL}}) \\ \text{logit}(\mu_{ij\text{Mobil}}) &= a^{\text{Mobil}} + \boldsymbol{X}_{i}(\boldsymbol{\beta} + \boldsymbol{\beta}^{\text{Mobil}}) \end{aligned}$$

Analysis

Table 2: Results from general model assuming unstructured corr structure. P-values are for H_0 : $\beta^{ABL} = \beta^{Mobil} = 0$

	GEE		CWGEE		
	Estimate (SE)	P-value	Estimate (SE)	P-value	
Int (CAL)	-4.500 (0.879)		-4.810 (0.888)		
Int (ABL)	-4.042 (0.843)		-3.750 (0.887)		
Int (Mobil)	-4.821 (0.888)		-4.174 (0.958)		
Age	0.041 (0.105)		0.051 (0.106)		
Age (ABL)	-0.017 (0.100)	0.231	-0.024 (0.096)	0.018	
Age (Mobil)	-0.010 (0.102)		-0.023 (0.104)		
Smoking	0.710 (0.445)		0.657 (0.470)		
Smoking (ABL)	0.253 (0.421)	0.360	0.132 (0.421)	0.726	
Smoking (Mobil)	0.078 (0.426)		-0.018 (0.455)		
Edu	-0.401 (0.334)		-0.424 (0.350)		
Edu (ABL)	0.002 (0.316)	0.683	-0.041 (0.320)	0.454	
Edu (Mobil)	-0.083 (0.323)		-0.157 (0.353)		
MetS	0.403 (0.420)		0.336 (0.430)		
MetS (ABL)	-0.197 (0.401)	0.288	-0.267 (0.406)	0.197	
MetS (Mobil)	0.096 (0.422)		0.067 (0.434)		

Table 3: Results from parsimonious models assuming unstructured corr structure

	GEE		CWGEE		
	Estimate (SE)	P-value	Estimate (SE)	P-value	
Int (CAL)	-4.086 (0.671)	< 0.001	-4.774 (0.887)	< 0.001	
Int (ABL)	-4.659 (0.676)	< 0.001	-3.751 (0.873)	< 0.001	
Int (Mobil)	-5.133 (0.675)	< 0.001	-4.295 (0.926)	< 0.001	
Age	0.035 (0.010)	< 0.001	0.052 (0.106)	< 0.001	
Age (ABL)			-0.025 (0.096)	0.007	
Age (Mobil)			-0.024 (0.106)	0.028	
Smoking	0.794 (0.171)	< 0.001	0.695 (0.441)	< 0.001	
Edu	-0.413 (0.010)	< 0.001	-0.458 (0.329)	< 0.001	
MetS	0.360 (0.154)	0.019	0.277 (0.404)	0.089	

Table 4: Estimates of the working correlation matrices (unstructured and exchangeable): GEE estimates are shown in the upper half of the matrices and CWGEE estimates are shown in the lower half of the matrices.

Unstructured			Ex	change	able		
	CAL	ABL	Mobil		CAL	ABL	Mobil
CAL	-	0.40	0.33	CAL	-	0.31	0.31
ABL	0.40	-	0.29	ABL	0.34	-	0.31
Mobil	0.32	0.29	-	Mobil	0.34	0.34	-

Analysis

Figure 2: Predicted probability of each outcome by age of a smoker with MetS and no college education

Simulation study

Simulation study to assess performance between multivariate CWGEE and GEE

- N=750 subjects, K=3 outcomes
- Induced ICS
- Varied correlation between teeth and correlation between outcomes

Result

- GEE
 - Performs well when applied to data with no ICS
 - Type I error inflated in scenarios with higher levels of correlation
 - Relative bias increase with increasing levels of correlation
- CWGEE
 - Type I error close to 5% across varying levels of correlation
 - Low relative biases and excellent coverage probabilities across varying levels of correlation
 - Performs well when applied to data with no ICS

Research question

What is the relationship between periodontal disease and MetS?

Answer

MetS is not an important predictor

Weighting Condom Use Data to Account for Nonignorable Cluster Size

JOHN M. WILLIAMSON, MSC, SCD, HAE-YOUNG KIM, MSC, AND LEE WARNER, MPH, PHD

PURPOSE: We examined the impact of weighting the generalized estimating equation (CEE) by the inverse of the number of sex acts on the magnitude of association for factors predictive of recent condon use. METHODS: Data were analyzed from a cross-sectional survey on condom use reported during vaginal intercourse during the past year among male students attending two Georgia universities. The usual GEE model was fit to the data predicting the binary act-specific response indicating whether a condow was used. A second cluster-weighted GEE model (i.e., weighting the GEE score equation by the inverse of the number of sex acts) was also fit to predict condom use.

RESULTS: Study participants who engaged in a greater frequency of sex acts were less likely to report condom use, resulting in nonignorable cluster-site data. The CBE randysis weighted by sex act (usual GEE) and the GEE analysis weighted by study subject (cluster-weighted GEE) produced different estimates of the association between the covariates and condom use in last year. For example, the cluster-weighted GEE analysis resulted in a marginally significant relationship between age and condom use (odds ratio of 0.49 with 95% confidence interval (0.23–1.03) for older versus younger participants) versus a nonsignificant relationship with the usual GEE model (odds ratio of 0.64 with a 95% confidence interval of 0.28–1.60).

CONCLUSIONS: The two ways of weighting the GEE score equation, by the sex act or by the respondent, may produce different results and a different interpretation of the parameters in the presence of nonignorable cluster size.

Ann Epidemiol 2007;17:603-607. © 2007 Elsevier Inc. All rights reserved.

KEY WORDS: Condom use, Generalized Estimating Equations, HIV Infections, Informative Cluster Size, Sex Behavior, Sexually Transmitted Diseases.

ICS in HIV/STD research, Williamson et al

- Male condom use has been associated with reduced risk of HIV and many other STDs
- Identify demographic and behavioral characteristics of persons who report using condoms for STD prevention
- A cross-sectional study on condom use was conducted on a sample of male students attending two Georgia universities during 1993–1994
- Eligibility
 - Age 18-29 years
 - Full-time student
 - Lifetime use of ≥ 5 condoms during vaginal intercourse
- Confidential standardized interview to ascertain information about their use of condoms during vaginal intercourse, including condom use during the past year

- *i* = 1, ..., 85 students
- $j = 1, ..., n_i$ sex acts

86-280

Total

• $Y_{ii} = 1$ if condom used

sex acts						
Number of sex acts	Number of respondents	Percent condom use (no.)				
0	5					
1-15	18	77.9 (109/140)				
16-50	23	68.9 (519/753)				
51-85	19	57.0 (743/1304)				

20

85

25.2 (750/2980)

41.0 (2121/5177)

TABLE 1 Percentage of condom use in last year by number of

ICS in HIV/STD research, Williamson et al

TABLE 2. Results of GEE analyses of condom use data from a cross-sectional survey of males attending two Georgia universities

		Unweigh	ted GEE ^{a,b}	Weigh	ted GEE ^{a,c}
Predictor	No. of persons	Adjusted OR ^a	95% CI ^a	Adjusted OR ^a	95% CIª
Intercept					
Age	80				
≥23 years	36	0.67	[0.28-1.60]	0.49	[0.23-1.03]
18-22 years	44	1.0		1.0	
Race	80				
Black	26	2.69	[1.04-6.97]	1.90	[0.83-4.36]
Other	54	1.0		1.0	
Number of	78				
sex partners					
≥10	39	0.96	[0.32-2.91]	0.77	[0.32-1.90]
<10	39	1.0		1.0	
Condom use	77				
at first sex					
Yes	41	1.31	[0.54-3.19]	1.36	[0.63-2.93]
No	36	1.0		1.0	

 ${}^{a}\!GEE$ = generalized estimating equations, OR = odds ratio, CI = confidence interval.

^bUsual unweighted GEE analysis with independence working correlation matrix based on 75 subjects, after deleting five observations with missing values.

^cCluster-weighted GEE analysis with independence working correlation matrix based on 75 subjects, after deleting five observations with missing values.

- Cluster size (number of sex acts) was informative on the outcome (condom use)
 - Cluster size varied
 - Strong association between cluster size and outcome
- Some differences observed in results from unweighted GEE vs. CWGEE
- Differences may be due to relationships between
 - cluster size and outcome
 - covariate and outcome
 - covariate and cluster size

Outcome (Y)	Unit w/n cluster	Cluster	Study
Neonatal complication	Infant	Birth	Yelland, 2015
Fetal malformation	Live fetus	Litter	Zhang, 2015
Alcohol consumption	Student	School	Innocenti, 2018
Surgical outcome	Patient	Hospital	Panageas, 2007

Marginal inference

- Longitudinal data (Wang et al, 2011 & Bible et al, 2016 & Mitani et al, 2019)
- With informative empty clusters (McGee et al, 2019)

Cluster-specific inference

- Joint modelling of cluster size and outcomes (Dunson et al, 2003 & Gueorguieva, 2005)
- GLMM (Neuhaus and McCulloch, 2011)

Time-to-event analysis

• Williamson et al, 2008 & Zhang et al, 2013

- Plot outcome and cluster size
 - Compute correlation
- Formal tests
 - Wald test (Benhin et al, 2005)
 - Bootstrap (Nevalainen et al, 2017)
- Sensitivity analysis

- For cross-sectional data with single outcome
 - Use weights argument in R package geepack
 - Use WEIGHTS statement in SAS PROC GEE or PROC GENMOD
- R package CWGEE (https://github.com/AyaMitani/CWGEE)
 - Use mvoCWGEE function for cross-sectional data with multiple outcomes
 - Use ordCWGEE function for longitudinal data with ordinal outcomes (Mitani et al, 2019)

Final Message

Brush your teeth ≥ 2 and floss ≥ 1 times every day for all $n_i = 1, ..., 28!!$

References

Kaye, E. K. et al. Metabolic Syndrome and Periodontal Disease Progression in Men. Journal of Dental Research 95, 822–828 (2016).

Hoffman, E. B. et al. Within-cluster resampling. Biometrika 88, 1121-1134 (2001).

Chaganty, N. R. *et al.* On eliminating the asymptotic bias in the quasi-least squares estimate of the correlation parameter. *Journal of Statistical Planning and Inference* **76**, 145–161 (1999).

Mitani, A. A. *et al.* Marginal analysis of multiple outcomes with informative cluster size. Under revision.

Mitani, A. A. et al. Marginal analysis of ordinal clustered longitudinal data with informative cluster size. *Biometrics* 75, 938–949 (2019).

Williamson, J. M. et al. Weighting Condom Use Data to Account for Nonignorable Cluster Size. Annals of Epidemiology 17, 603–607 (2007).

Benhin, E. *et al.* Mean Estimating Equation Approach to Analysing Cluster-Correlated Data with Nonignorable Cluster Sizes. *Biometrika* **92**, 435–450 (2005).

Nevalainen, J. et al. Tests for informative cluster size using a novel balanced bootstrap scheme. *Statistics in Medicine* **36**, 2630–2640 (Mar. 2017).

Yelland, L. N. *et al.* Analysis of Randomised Trials Including Multiple Births When Birth Size Is Informative. *Paediatric and Perinatal Epidemiology* **29**, 567–575 (2015).

Innocenti, F. *et al.* Relative efficiencies of two-stage sampling schemes for mean estimation in multilevel populations when cluster size is informative. *Statistics in Medicine* **38**, 1817–1834 (Dec. 2018).

Panageas, K. S. *et al.* Properties of analysis methods that account for clustering in volume–outcome studies when the primary predictor is cluster size. *Statistics in Medicine* **26**, 2017–2035 (2007).

losif, A.-M. *et al.* A model for repeated clustered data with informative cluster sizes. *Statistics in Medicine* **33**, 738–759 (Sept. 2013).

Wang, M. et al. Inference for marginal linear models for clustered longitudinal data with potentially informative cluster sizes. *Statistical Methods in Medical Research* **20**, 347–367 (2011).

Bible, J. *et al.* Cluster adjusted regression for displaced subject data (CARDS): Marginal inference under potentially informative temporal cluster size profiles. *Biometrics* **72**, 441–451 (2016).

McGee, G. *et al.* Informatively empty clusters with application to multigenerational studies. *Biostatistics* (Apr. 2019).

Dunson, D. B. *et al.* A Bayesian Approach for Joint Modeling of Cluster Size and Subunit-Specific Outcomes. *Biometrics* **59**, 521–530 (2003).

Gueorguieval, R. V. *et al.* Joint analysis of repeatedly observed continuous and ordinal measures of disease severity. *Statistics in Medicine* **25**, 1307–1322 (2006).

Neuhaus, J. M. *et al.* Estimation of covariate effects in generalized linear mixed models with informative cluster sizes. *Biometrika* **98**, 147–162 (2011).

Williamson, J. M. *et al.* Modeling survival data with informative cluster size. *Statistics in Medicine* **27**, 543–555 (2008).

Zhang, X. Y. *et al.* Semiparametric Regression Analysis of Clustered Interval-Censored Failure Time Data with Informative Cluster Size. *International Journal of Biostatistics* 9, 205–214 (2013).

Questions?

Co-authors Kerrie Nelson, Biostatistics, BU School of Public Health Elizabeth Kaye, BU Henry M. Goldman School of Dental Medicine

Funding F31DE027589 (PI: Mitani) R01CA226805 (PI: Nelson)

Design of simulation study

- N=750 subjects, K=3 outcomes
- $n_i \sim \text{Bin}(size = 28, prob = \lambda_i)$
- $\Pr(Y_{ijk} = 1) \sim f(\lambda_i, a_k, \boldsymbol{X}_i)$
- True model: $logit{Pr(Y_{ijk} = 1)} = a_k + X_i\beta$
- Compare performance of GEE and CWGEE while varying
 - 1. Correlation between teeth, τ : (0, 0.25, 0.5, 0.75)
 - 2. Correlations between outcomes $(\alpha_{12}, \alpha_{13}, \alpha_{23})$:

None	Low	Medium	High
(0, 0, 0)	(0.4, 0.35, 0.3)	(0.6, 0.55, 0.5)	(0.8, 0.75, 0.7)

• Number of simulations: 1,000

Simulation results

Figure 3: Simulation results of type I error rate $(H_0 : \beta_1 = \beta_2 = 0)$ when fitting general model

