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Periodontal Disease

• Inflammatory disease affecting gums and bones surrounding teeth

• Progress is measured by many factors including clinical attachment

loss (CAL)

• Mild periodontal disease – swollen and bleeding gums

• Severe periodontal disease – loosening teeth and teeth loss
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Periodontal Disease

• Affects 30-50% of adult population in US

• Associated with

• Age

• Smoking

• Low SES

• Cardiovascular disease

• Diabetes

• HIV
? Metabolic syndrome or MetS (Presence of ≥3 of the 5 following

metabolic risk factors)

1. Large waistline (≥102 cm)

2. High triglyceride level (≥150 mg/dl)

3. Low HDL cholesterol level (<40 mg/dl)

4. High blood pressure (SBP≥130 or DBP≥85 mmHg)

5. High fasting blood sugar (≥100 mg/dL or antidiabetic drug use)
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Periodontal Disease

ABL: Alveolar bone loss; CAL: Clinical attachment loss;

Mobil: Mobility; PPD: Probing pocket depth 4



Periodontal Disease

No universal definition of advanced periodontal disease

Periodontal disease outcomes

ABL CAL Mobil PPD

Ordinal score

0: None

1: <20%

2: 20-39%

3: 40-59%

4: 60-79%

5: ≥80%

0: <2mm

1: 2-2.9mm

2: 3-4.9mm

3: ≥5mm

0: None

1: <0.5mm

2: 0.5-0.9mm

3: ≥1mm

0: <2mm

1: 2-2.9mm

2: 3-4.9mm

3: ≥5mm

ABL: Alveolar bone loss

CAL: Clinical attachment loss

Mobil: Mobility

PPD: Probing pocket depth
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Motivating data set: VA Dental Longitudinal Study

Table 1: Description of Veterans Affairs Dental Longitudinal Study

(1981-2011)

Number of subjects 760

Percentage of Men 100%

Number of visits per subject 1-11

Subject-level baseline variables Age, Education, etc.

Subject-level time-varying variables MetS, Smoking, etc.

Tooth-level variables PPD, CAL, ABL, Mobil

Baseline number of teeth per subject 1-28

Kaye et al, 2016
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Overall research question

What is the relationship

between periodontal disease

and MetS?

7



Overall research question

What is the relationship

between periodontal disease

and MetS?
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Marginal models for clustered data

Notation

• i = 1, ...,N Subjects

• j = 1, ..., ni teeth for ith subject at baseline

• µi = E (Yi |Xi ) where Yi = (Yi1,Yi2, ...,Yini )
′

Generalized estimating equations (GEE)
N∑
i=1

∂µi

∂β

′
V−1
i (Yi − µi ) = 0

where Vi = A
1/2
i RiA

1/2
i and Ai is the diagonal matrix of variance

µi (1− µi ) and Ri is the working correlation matrix

Assumption of GEE
Independence between cluster size (number of teeth per subject, ni ) and

outcome
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Informative cluster size

Figure 1: Baseline number of teeth vs. mean CAL score

Pearson correlation coefficient = -0.470 (-0.553, -0.378)
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Informative cluster size

What is informative cluster size (ICS)?

• Cluster size (number of teeth per subject, ni ) varies

• Outcome (CAL) is not independent of cluster size (number of teeth)

given the exposure (MetS)

E (Yi |Xi = xi , ni ) 6= E (Yi |Xi = xi )

Issues with informative cluster size (ICS)

• Standard methods for clustered data analysis assume independence

between outcome and cluster size

• When assumption is violated, analysis may result in biased estimates

Hoffman et al, 2001
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Cluster weighted generalized estimating equations (CWGEE)

CWGEE for cross-sectional data
N∑
i=1

1

ni

ni∑
j=1

∂µij

∂β

′
V−1
ij (Yij − µij) = 0

• E (β̂CWGEE ) = β

•
√
N(β̂CWGEE − β)

d−→ MN(0,B−1MB−1) where

• B =
∑N

i=1
1
ni

∑ni
j=1

∂µij

∂β

′
V−1

ij

∂µij

∂β

• M =∑N
i=1

[
1
ni

∑ni
j=1

∂µij

∂β

′
V−1

ij (Yij − µij)
] [

1
ni

∑ni
j=1

∂µij

∂β

′
V−1

ij (Yij − µij)
]′

Williamson et al, 2003
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Difference in inference

GEE with independence working correlation

• Inference for population of all units

• Larger clusters contribute more to inference than smaller ones

• May be preferred in economic assessment of how many, and which,

teeth among patients seen at dental clinic require costly intervention

CWGEE

• Inference for typical unit of typical cluster

• All clusters contribute to inference equally

• May be preferred in study of patient factors linked to disease status

of teeth
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Informative cluster size
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Marginal analysis of multiple correlated outcomes

Solutions for analysis of multiple correlated binary outcomes with ICS

• Define composite binary outcome and use one model

Perio =

{
1 if ABL ≥ 40% and CAL/PPD ≥ 5mm and Mobil ≥ 0.5mm

0 otherwise

• How to define single outcome?

• Can obscure true effect

• Use four separate models, one for each outcome

• Ignores correlation between outcomes

• Need to correct for multiple comparison

• Multivariate approach to jointly analyze all outcomes in one model
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Marginal analysis of multiple correlated outcomes with ICS

Three dichotomized periodontal disease outcomes

Periodontal disease outcomes

ABL CAL Mobil

Dichotomized score
0: <40%

1: ≥40%

0: <5mm

1: ≥5mm

0: <0.5mm

1: ≥0.5mm

ABL: Alveolar bone loss

CAL: Clinical attachment loss

Mobil: Mobility
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Method

• i = 1, ...,N Subjects

• j = 1, ..., ni teeth for ith subject at baseline

• k = 1, 2, 3 outcome variables

• Yijk is kth binary outcome for jth tooth of ith subject,

Yij = (Yij1,Yij2,Yij3)

• Xi is subject-level predictor

• µijk = Pr(Yijk = 1)

General model

logit(µij1) = a1 + Xiβ,

logit(µij2) = a2 + Xi (β + β12),

logit(µij3) = a3 + Xi (β + β13).

(1)

Hypothesis test

H0 : β12 = β13 = 0
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Method

• i = 1, ...,N Subjects

• j = 1, ..., ni teeth for ith subject at baseline

• k = 1, 2, 3 outcome variables

• Yijk is kth outcome for jth tooth of ith subject,

Yij = (Yij1,Yij2,Yij3)

• Xi is subject-level predictor

• µijk = Pr(Yijk = 1)

Parsimonious model

logit(µij1) = a1 + Xiβ,

logit(µij2) = a2 + Xiβ,

logit(µij3) = a3 + Xiβ.

(2)
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Method

How to model correlation between outcomes?

Generalized sum of squares for error

QGEE =
N∑
i=1

ni∑
j=1

ZijRij(α)−1ZT
ij

where Zij = (Yij − µij)/
√
µij(1− µij) and Rij(α) is correlation matrix

between outcomes (Chaganty & Shults, 1999)

Cluster weighted generalized sum of squares for error

QCWGEE =
N∑
i=1

1

ni

ni∑
j=1

ZijRij(α)−1ZT
ij
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Method

How to model correlation between outcomes?

Estimation of β
∂Q(β,α)

∂β = 0⇒

UCWGEE (β,α) =
N∑
i=1

1

ni

ni∑
j=1

∂µij

∂β

′
Vij(α)−1(Yij − µij) = 0 (3)

Estimation of α
∂Q(β,α)

∂α = 0⇒
N∑
i=1

1

ni

ni∑
j=1

Zij
∂Rij(α)−1

∂α
ZT
ij = 0 (4)

Iterate between Equations (3) and (4) until convergence.
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Method

Working correlation structures for Rij(α)

1. Unstructured:

Rij(α) =

 1 α12 α13

α12 1 α23

α13 α23 1


2. Exchangeable:

Rij(α) =

 1 α α

α 1 α

α α 1


3. Independence:

Rij(α) =

 1 0 0

0 1 0

0 0 1
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Analysis

VA Dental Longitudinal Study (Baseline)

• N = 760 subjects

• 1− 28 teeth per subject

• K = 3 binary outcomes: CAL≥5mm, ABL≥40%, Mobil≥0.5mm

• Subject-level predictors: X i = (X ′Age,X
′
Smoking,X

′
Education,X

′
MetS)

General model

logit(µijCAL) = aCAL + X iβ

logit(µijABL) = aABL + X i (β + βABL)

logit(µijMobil) = aMobil + X i (β + βMobil)
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Analysis

Table 2: Results from general model assuming unstructured corr structure.

P-values are for H0 : βABL = βMobil = 0

GEE CWGEE

Estimate (SE) P-value Estimate (SE) P-value

Int (CAL) -4.500 (0.879) -4.810 (0.888)

Int (ABL) -4.042 (0.843) -3.750 (0.887)

Int (Mobil) -4.821 (0.888) -4.174 (0.958)

Age 0.041 (0.105) 0.051 (0.106)

Age (ABL) -0.017 (0.100) 0.231 -0.024 (0.096) 0.018

Age (Mobil) -0.010 (0.102) -0.023 (0.104)

Smoking 0.710 (0.445) 0.657 (0.470)

Smoking (ABL) 0.253 (0.421) 0.360 0.132 (0.421) 0.726

Smoking (Mobil) 0.078 (0.426) -0.018 (0.455)

Edu -0.401 (0.334) -0.424 (0.350)

Edu (ABL) 0.002 (0.316) 0.683 -0.041 (0.320) 0.454

Edu (Mobil) -0.083 (0.323) -0.157 (0.353)

MetS 0.403 (0.420) 0.336 (0.430)

MetS (ABL) -0.197 (0.401) 0.288 -0.267 (0.406) 0.197

MetS (Mobil) 0.096 (0.422) 0.067 (0.434)
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Analysis

Table 3: Results from parsimonious models assuming unstructured corr

structure

GEE CWGEE

Estimate (SE) P-value Estimate (SE) P-value

Int (CAL) -4.086 (0.671) <0.001 -4.774 (0.887) <0.001

Int (ABL) -4.659 (0.676) <0.001 -3.751 (0.873) <0.001

Int (Mobil) -5.133 (0.675) <0.001 -4.295 (0.926) <0.001

Age 0.035 (0.010) <0.001 0.052 (0.106) <0.001

Age (ABL) -0.025 (0.096) 0.007

Age (Mobil) -0.024 (0.106) 0.028

Smoking 0.794 (0.171) <0.001 0.695 (0.441) <0.001

Edu -0.413 (0.010) <0.001 -0.458 (0.329) <0.001

MetS 0.360 (0.154) 0.019 0.277 (0.404) 0.089
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Analysis

Table 4: Estimates of the working correlation matrices (unstructured and

exchangeable): GEE estimates are shown in the upper half of the matrices and

CWGEE estimates are shown in the lower half of the matrices.

Unstructured Exchangeable

CAL ABL Mobil CAL ABL Mobil

CAL - 0.40 0.33 CAL - 0.31 0.31

ABL 0.40 - 0.29 ABL 0.34 - 0.31

Mobil 0.32 0.29 - Mobil 0.34 0.34 -
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Analysis

Figure 2: Predicted probability of each outcome by age of a smoker with MetS

and no college education
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Simulation study

Simulation study to assess performance between multivariate

CWGEE and GEE

• N=750 subjects, K=3 outcomes

• Induced ICS

• Varied correlation between teeth and correlation between outcomes

Result

• GEE

• Performs well when applied to data with no ICS

• Type I error inflated in scenarios with higher levels of correlation

• Relative bias increase with increasing levels of correlation

• CWGEE

• Type I error close to 5% across varying levels of correlation

• Low relative biases and excellent coverage probabilities across varying

levels of correlation

• Performs well when applied to data with no ICS
27



Conclusions

Research question
What is the relationship between periodontal disease and MetS?

Answer
MetS is not an important predictor
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ICS in HIV/STD research, Williamson et al
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ICS in HIV/STD research, Williamson et al

• Male condom use has been associated with reduced risk of HIV and

many other STDs

• Identify demographic and behavioral characteristics of persons who

report using condoms for STD prevention

• A cross-sectional study on condom use was conducted on a sample of

male students attending two Georgia universities during 1993–1994

• Eligibility

• Age 18-29 years

• Full-time student

• Lifetime use of ≥ 5 condoms during vaginal intercourse

• Confidential standardized interview to ascertain information about

their use of condoms during vaginal intercourse, including condom

use during the past year
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ICS in HIV/STD research, Williamson et al

• i = 1, ..., 85 students

• j = 1, ..., ni sex acts

• Yij = 1 if condom used
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ICS in HIV/STD research, Williamson et al
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ICS in HIV/STD research, Williamson et al

• Cluster size (number of sex acts) was informative on the outcome

(condom use)

• Cluster size varied

• Strong association between cluster size and outcome

• Some differences observed in results from unweighted GEE vs.

CWGEE

• Differences may be due to relationships between

• cluster size and outcome

• covariate and outcome

• covariate and cluster size
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More recent studies that address ICS

Outcome (Y ) Unit w/n cluster Cluster Study

Neonatal complication Infant Birth Yelland, 2015

Fetal malformation Live fetus Litter Zhang, 2015

Alcohol consumption Student School Innocenti, 2018

Surgical outcome Patient Hospital Panageas, 2007
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Other methods for ICS

Marginal inference

• Longitudinal data (Wang et al, 2011 & Bible et al, 2016 & Mitani et

al, 2019)

• With informative empty clusters (McGee et al, 2019)

Cluster-specific inference

• Joint modelling of cluster size and outcomes (Dunson et al, 2003 &

Gueorguieva, 2005)

• GLMM (Neuhaus and McCulloch, 2011)

Time-to-event analysis

• Williamson et al, 2008 & Zhang et al, 2013
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How to check for ICS?

• Plot outcome and cluster size

• Compute correlation

• Formal tests

• Wald test (Benhin et al,

2005)

• Bootstrap (Nevalainen et al,

2017)

• Sensitivity analysis

36



Software for CWGEE

• For cross-sectional data with single outcome

• Use weights argument in R package geepack

• Use WEIGHTS statement in SAS PROC GEE or PROC GENMOD

• R package CWGEE (https://github.com/AyaMitani/CWGEE)

• Use mvoCWGEE function for cross-sectional data with multiple

outcomes

• Use ordCWGEE function for longitudinal data with ordinal outcomes

(Mitani et al, 2019)
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Final Message

Brush your teeth ≥2 and floss ≥1 times every day for all ni = 1, ..., 28!!
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Thank you!

Questions?
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Simulation study

Design of simulation study

• N=750 subjects, K=3 outcomes

• ni ∼ Bin(size = 28, prob = λi )

• Pr(Yijk = 1) ∼ f (λi , ak ,X i )

• True model: logit{Pr(Yijk = 1)} = ak + X iβ

• Compare performance of GEE and CWGEE while varying

1. Correlation between teeth, τ : (0, 0.25, 0.5, 0.75)

2. Correlations between outcomes (α12, α13, α23):

None Low Medium High

(0, 0, 0) (0.4, 0.35, 0.3) (0.6, 0.55, 0.5) (0.8, 0.75, 0.7)

• Number of simulations: 1,000
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Simulation results

Figure 3: Simulation results of type I error rate (H0 : β1 = β2 = 0) when

fitting general model
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Simulation results

Figure 4: Simulation results of relative bias (β̂)
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