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a b s t r a c t

Multiple imputation (MI) is an appealing option for handling miss-
ing data. When implementing MI, however, users need to make
important decisions to obtain estimates with good statistical prop-
erties. One such decision involves the choice of imputation model
– the joint modeling (JM) versus fully conditional specification
(FCS) approach. Another involves the choice of method to han-
dle interactions. These include imputing the interaction term as
any other variable (active imputation), or imputing the main ef-
fects and then deriving the interaction (passive imputation). Our
study investigates the best approach to performMI in the presence
of interaction effects involving two categorical variables. Such ef-
fects warrant special attention as they involve multiple correlated
parameters that are handled differently under JM and FCS mod-
eling. Through an extensive simulation study, we compared ac-
tive, passive and an improved passive approach under FCS, as JM
precludes passive imputation. We additionally compared JM and

∗ Corresponding author.
E-mail addresses: amitani@bu.edu (A.A. Mitani), akurian@stanford.edu (A.W. Kurian), amar.das@dartmouth.edu (A.K. Das),

manisha.desai@stanford.edu (M. Desai).
1 Tel.: +1 650 498 6004.
2 Tel.: +1 650 725 1946.

http://dx.doi.org/10.1016/j.stamet.2015.06.001
1572-3127/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.stamet.2015.06.001
http://www.elsevier.com/locate/stamet
http://www.elsevier.com/locate/stamet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.stamet.2015.06.001&domain=pdf
mailto:amitani@bu.edu
mailto:akurian@stanford.edu
mailto:amar.das@dartmouth.edu
mailto:manisha.desai@stanford.edu
http://dx.doi.org/10.1016/j.stamet.2015.06.001


A.A. Mitani et al. / Statistical Methodology 27 (2015) 82–99 83

FCS techniques using active imputation. Performance between ac-
tive andpassive imputationwas comparable. The improvedpassive
approach proved superior to the other two particularly when the
number of parameters corresponding to the interaction was large.
JM without rounding and FCS using active imputation were also
mostly comparable, with JM outperforming FCS when the number
of parameters was large. In a direct comparison of JM active and
FCS improved passive, the latter was the clear winner. We recom-
mend improved passive imputation under FCS along with sensitiv-
ity analyses to handle multi-level interaction terms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multiple imputation (MI) is an increasingly popular approach for handling missing data
[7,8,11,19]. Largely this is due to a growing awareness of the potential bias and inefficiencies that
result from applying inappropriate methods, and an increase in software accessibility to perform
MI [28]. For example, mainstream software packages such as SAS/STAT software [20], Stata [22], and
R [16] offerMI-based analyses. Despite this, a complete-case (CC) analysis, which restricts the analysis
to observations with no missing values, still remains the most commonly applied approach, perhaps
because it is the default option for handlingmissing data in all statistical software packages [10,23]. CC
analysis, however, is valid when the data are missing completely at random (MCAR) (i.e., missingness
is not related to observed or unobserved features), an assumption that does not typically hold in
practice. If violated, CC analysis can result in biased and inefficient estimates. MI, on the other hand,
is statistically valid under a more flexible assumption about the missing data mechanism; it relies
on the assumption that the data are missing at random (MAR) or that missingness is related to
observed features only (i.e., after conditioning on relevant observed features, missingness is unrelated
to unobserved values). Briefly, MI is a simulation-based approach for filling in each missing datum
with a plausible value repeatedly to account for the uncertainty of the sampled values and the
imputation process itself. It requires the specification of two statistical models: an imputation model,
which is used to impute themissing data form imputed datasets, and a scientific model, which is used
to analyze each of the m imputed datasets in order to address the research question [18].

In addition to being the default approach in software packages, CC analysis may be preferred for
its simplicity. Another possible barrier to incorporating MI in the analysis is the numerous choices
faced by analysts when implementing MI. Importantly, these choices can have great impact on the
results. Among the various choices are the specification of the imputationmodel (i.e., which variables
to consider in the imputation model and their functional form) [5], and the imputation approach.
The two main imputation approaches are the joint modeling (JM) approach and the fully conditional
specification (FCS) approach. Briefly, JM involves specifying a joint distribution for the data, which is
typically assumed to be multivariate normal, in order to derive the posterior predictive distribution
from which to impute values [24]. FCS bypasses the specification of a joint model and instead
directly specifies the conditional distribution for each partially observed variable [24]. The latter may
present advantages for data that contain variables of mixed type, such as binary and categorical
variables, where specifying a joint distribution for the data is particularly challenging. While the
theoretical properties of estimates generated by JM are well established [14], they are less tractable
for FCS, although its use has been well justified empirically through simulation studies [26,29]. In his
comprehensive review of these two methods, van Buuren compares and contrasts performance of
these two methods. He recommends JM when a multivariate normal assumption is sensible and FCS
in the presence of variables of mixed type [24].

Another choice posed to analysts involves how to impute derived variables such as interaction
terms. There are two main approaches for handling interaction terms. One approach is to transform
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Table 1
Differences between predictors of active imputation and passive imputation approaches in the imputation model under FCS.

Scientific model: Y = X1 + X2 + X1X2

Variable with missing values Predictors in imputation model
Active Passive Improved passive

X1 Y , X2, X1X2, Z Y , X2, Z Y , X2, YX2, Z
X2 Y , X1, X1X2, Z Y , X1, Z Y , X1, YX1, Z
X1X2: X1 × X2 Y , X1, X2, Z – –
Z Y , X1, X2, X1X2 Y , X1, X2, X1X2 Y , X1, X2, X1X2

Z: Auxiliary variable.
YX1: Interaction between Y and X1 .
YX2: Interaction between Y and X2 .

or derive the variable (by taking the product of the corresponding main effects) and then to impute
it as with any other variable (transform–impute). Another approach is to impute the data and then
to subsequently transform or derive the interaction variable (impute–transform) [27]. The former is
referred to as active imputation, and can be applied under either JM or FCS approach. However, this
approach is likely to produce an imputed interaction term that is not the product of its corresponding
main effects. The latter, on the other hand, has a seemingly desirable property of preserving a
consistent relationship between the imputed interaction term and its corresponding main effects.
However, the imputation model may not be compatible with the scientific model that describes the
outcome as a function of interactions [15,19]. A variation of this approach that partially addresses
this problem is to include the interaction variable in the imputation model, but later replace the
imputed interaction termwith the product of the imputedmain effects (transform–impute–transform)
in order to preserve the correct relationship. This method also can be implemented under either JM
or FCS approach. An iterative variation of this approach that can be implemented under FCS only is
called passive imputation. Specifically, to passively impute an interaction term, one first computes
the interaction term and considers it in the imputation of all variables with the exception of those
used to derive the interaction (Table 1). Missing values of the interaction term are then derived (not
imputed) as a function of the main effects [17]. This is more desirable than the impute–transform
method, as the interaction term is still considered in the imputation process with the benefit of
achieving internal consistency between the interaction effect and its corresponding main effects.
Another method referred to as improved passive imputation has recently been introduced, where the
interaction of one of the main effects and the outcome is included as a predictor when imputing the
other main effect (Table 1). Intuition behind why this approach may reduce bias compared to the
conventional passive imputation is that if there were a true interaction between two main effects in
the scientific model, the relationship between one of the main effects and the outcome would vary
with the other main effect. However, the performance of improved passive imputation still remains an
open topic [21,27,29]. Finally, if one of the variables involved in the interaction is fully observed, one
can impute the data separately in different levels of this variable to allow for the interaction [27]. This
has been shown to be less biased than any of the aforementioned methods, but can only be applied in
the specific situation in which one of the variables involved in the interaction is fully observed, and is
therefore not considered in this paper. The differences in how the imputationmodel is specified across
the active, passive and improved passive approaches are tabulated in Table 1. Note that all methods
impute the auxiliary term, Z , in the sameway but that only the active approach imputes the interaction
term, whereas the passive approaches derive it. The main difference across the three approaches lies
in how the main effects are imputed.

Several authors have compared these approaches with mixed findings [21,27,29]. von Hippel
recommends the transform–impute or active approach [27]. In his study, he showed that active
imputation under FCS produced good regression estimates despite the internal inconsistency between
the interaction effect and the main effects. He examined two scenarios under MCAR; one in which
there was a true interaction between two continuous variables and the other in which there was
a true interaction between a continuous and a binary variable. Under the FCS setting, White et al.
compared active, passive, and improved passive approaches when an interaction effect of two binary
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Table 2
Difference between scientific and imputation models by imputation technique when interaction term has 2 and 3 levels.

Number of categories in
the interaction term

Scientific model Imputation
technique

Imputation model

2 Y = X1 + X2 + X1X2
JM Y , X1, X2, X1X2, Z
FCS Y , X1, X2, X1X2, Z

3 Y = X1 +X2.1 +X2.2 +X1X2.1 +X1X2.2
JM Y , X1, X2.1, X2.2, X1X2.1, X1X2.2, Z
FCS Y , X1, X2, X1X2, Z

variables are of interest. They found that results from improved passive to be lower in bias than that
from passive imputation. They also showed that active imputation led to bias when data are MAR but
not MCAR [29]. Seaman et al. conducted a simulation study that yielded more nuanced findings. They
compared active, passive, and improved passive approaches under both MAR and MCAR conditions
for continuous and binary outcomes when interaction effects of two continuous variables were of
interest. They demonstrated that although improved passive was superior to passive imputation for
reducing bias, active imputation performed better than both passive approaches when the scientific
model was a linear regression under an MAR setting. Under logistic regression, active imputation of
quadratic terms (not interactions) were evaluated and showed to perform poorly when the outcome
was rare. The authors recommend active imputation as the best of a set of imperfect imputation
methods when estimating interactions using linear regression [21]. In contrast to these findings, van
Buuren recommends the use of passive imputation to maintain the internal consistency between the
interaction effect and the main effects [25].

In particular, imputing multi-level categorical interaction terms warrants attention. When an
interaction effect between two nominal categorical variables is of interest (i.e., when the product of
two predictors also results in a multi-level categorical term), it is represented in the scientific model
by multiple indicator terms. These multiple indicator terms are highly correlated because they are
defined to be mutually exclusive. This is distinct from cases in which the interaction is from two
continuous variables or two binary variables that result in one term representing the interaction. Even
when not involved in interaction effects, nominal categorical variables require careful consideration
during the imputation step [1–3,9]. In general, multi-level categorical terms are treated differently
under JM and FCS approaches (Table 2). Under JM, multiple indicator variables are included and
jointly modeled with all other variables in one imputation model. Under FCS, the multiple indicator
variables for the interaction term are modeled together – for example, in a polytomous regression
– but separately from all other variables. None of the previous studies discussed earlier investigated
situations where the interaction variable is a function of two nominal categorical variables, and no
research has assessed the properties resulting from these methods for categorical interaction terms
in a linear or a logistic regression model. In this paper we compare and contrast the performance of
active and passive imputation on imputing categorical interaction terms under FCS, and compare the
performance of active imputation on imputing nominal categorical interaction terms under both JM
and FCS. Situations inwhich the outcome variable is continuous (linear regression analysis) and binary
(logistic regression analysis) are considered.

The specific goals of our paper are to (1) Characterize differences in properties of estimates result-
ing from JM and FCS imputation using an active approach, (2) Characterize differences in properties
of estimates between active and passive approaches under FCS, and (3) Provide recommendations and
describe the various MI options, specifically when the objective is to estimate the effect of multi-level
categorical interaction terms on either a continuous or a binary outcome.

1.1. Active imputation vs. passive and improved passive imputation under FCS

When the scientific model involves derived variables such as interaction effects, the user has an
option to choose between active or passive imputation. For example, suppose that the covariates in the
scientific model include two partially observed binary variables, X1 and X2, and its interaction, X1X2,
i.e. Y = β0 + β1X1 + β2X2 + β3X1X2, where β0 is the intercept and βi, i=1,2,3 are the corresponding
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coefficients of the terms. In active imputation, the interaction variable is imputed as just another
variable in the imputation model. This may result in an interaction value, X1X2, that is inconsistent
with the values of its corresponding main effects (X1 and X2). For example, the imputed value of
X1X2 can be 1 when the imputed values of X1 and X2 are both 0. In active imputation under FCS, the
interaction variable acts like any other variable. As such, it is used to impute all other variables with
missing values including its corresponding main effects.

In passive imputation, a consistent relationship between X1, X2 and X1X2 is preserved by deriving
X1X2 after X1 and X2 are imputed. This is only possible under FCS, as FCS is executed on a variable-by-
variable basis, where an imputation model is specified for each partially observed variable (whereas
JM specifies one imputation model for all variables). As such, users have the flexibility of selecting
predictors in the imputation model for each missing variable. When passively imputing, X1X2 is
included in the imputationmodel for other partially observed variables that are not its corresponding
main effects, but X1X2 itself is not imputed. Rather, X1X2 is derived after X1 and X2 are imputed.
Importantly, while X1X2 is used to impute other missing variables, it is not used to impute X1 or X2
(Table 1). This is performed in an iterative process within the imputation procedure until convergence
criteria are satisfied. In other words, the interaction variable (X1X2) is updated every time one of the
two constituent variables (X1 or X2) is imputed.

Using the same ideas on which passive imputation is based, improved passive additionally includes
the interaction of a main effect and the outcome as one of the predictors of the other main effect in
the imputationmodel [27,29] (Table 1). More specifically, when imputing X1, the interaction between
Y and X2 (YX2) is included as a predictor in the imputation model. Similarly, when imputing X2, the
interaction between Y and X1 (YX1) is included.

1.1.1. Imputation model vs. scientific model for FCS
In FCS, imputation models need to be specified for each partially observed variable using Y , X1,

X2, X1X2, and other auxiliary term, Z [15,19]. A binary variablewill be imputedusing logistic regression
methods yielding a variable with binary values that can be directly used in the scientific model. When
the variable has more than two categories, polytomous regression or multinomial logistic regression
can be used to impute the variable. Because multiple models are being specified (one for each
partially observed variable), there is more flexibility than under JM, where one imputation model is
specified to jointly impute all variables. This flexibility allows for approaches like passive and improved
passive, where different sets of predictors can be included across each imputation model, or as in
the case of improved passive, where different functional forms can be considered across each model
(Table 1).

1.1.2. R—MICE for FCS
When comparing active and passive imputation under FCS, we utilized the MICE package in R.
The MICE package, released in 2000, includes procedures to implement FCS for MI in R [26].

Typically, users impute the data with the MICE function, then build m scientific models via functions
such as glm, and summarize the estimates using the pool function. The imputation technique for
each variable can be specified by the method argument within MICE. Three method options exist for
categorical variables; logreg that uses logistic regression, polyreg that uses polytomous (unordered)
regression, and lda that uses linear discriminant analysis. The defaults for binary and multi-level
categorical variables are logreg and polyreg respectively. In order to use one of these methods, the
variable needs to be specified as a factor variable which can be achieved easily using the as.factor()
function. The MICE function automatically creates indicator variables for each factor variable that
is also being used as a predictor in the imputation model. Active imputation is straightforward to
perform in MICE; the user simply includes the interaction term just like any other variables in the
imputation model and specifies which model to use for imputation. Users of MICE can also perform
passive imputation by performing a dry run of the imputation and changing the predictor and the
method matrices within the program. This requires somewhat intricate coding but is explained very
clearly by van Buuren [26]. (Also see example code in Appendix Example Code A.)
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1.2. FCS vs. JM using active imputation

Because FCS is executed on a variable-by-variable basis, users have the flexibility of selecting
predictors for each missing variable. In active imputation under FCS, however, the interaction variable
(X1X2) acts like any other variable. As such, it is used to impute all other variables with missing values
including its corresponding main effects (X1 and X2).

Unlike FCS, JM imputes the variables jointly. Therefore, every variable considered in the imputation
model is used to impute missing values for all variables, precluding the idea of passive imputation.
Active imputation under JM is comparable to active imputation under FCS in its implementation. In
both, the interaction effect (X1X2) is considered as just another variable and the imputed values do
not necessarily preserve the relationship between the interaction and its main effects (X1 and X2). In
fact, JM active and FCS active are identical when linear regression is used to impute every variable in
FCS.

1.2.1. Imputation model vs. scientific model for JM and FCS
Suppose again that the scientific model has the form, Y = β0 + β1X1 + β2X2 + β3X1X2, where Y

is the outcome variable, X1 and X2 are partially observed binary variables, and X1X2 is the interaction
between X1 and X2. In both JM and FCS, the imputation model should include the outcome Y , the
independent variables of interest, X1, X2, X1X2, and other auxiliary terms, Z [15,19]. Under JM, the
imputed values of X1 and X2 will not strictly be binary. In the scientific model, they may be left
as continuous or be rounded to produce {0, 1} values after the MI procedure. Rounding at 0.5 is
highly discouraged as it has been shown to introduce bias [1,2,9], and other rounding approaches
that perform better have been proposed [3,4,6,30]. Editing values post-imputation, however, remains
a controversial topic. Under FCS, on the other hand, the binary variables are typically imputed using
logistic regressionmethods yielding variables with binary values ready for use in the scientific model.
Note that when dealing with binary predictors, the variables specified for inclusion in the imputation
models for JM and FCS are equivalent (Table 2).

As described previously, the imputation models differ between JM and FCS when the variable has
more than two categories (Table 2). A nominal categorical variable of n levels are expressed as n − 1
indicator variables in the scientific model regardless of the imputation approach. In JM, the nominal
categorical variable is included in the imputation model in the form of n − 1 indicator variables, as
expressed in the scientific model. As in the binary case, after imputation, each indicator variable will
most likely contain values other than 0 or 1. And, as in the binary case, rounding techniques for multi-
level categorical variables have been proposed by some authors to address how the variables are
handled in analysis, but this remains an open research topic [3,4,6,30]. Alternatively, the imputed
values may be left unedited [1,2,9]. In contrast, the FCS approach imputes multi-level categorical
variables using techniques such as polytomous regression or discriminant analysis, where imputed
values are ready for analysis without the need for editing or rounding.

1.2.2. SAS—PROC MI for JM
We utilized SAS procedures to implement JM imputation. As with MICE, active imputation is

straightforward to perform in SAS using PROC MI (PROC MI does not have an option for passive
imputation). After the MI step, the scientific models from m imputed datasets are fit by a standard
model building command such as PROCGENMOD, PROC LOGISTIC, or PROC PHREG, and the parameter
estimates are summarized using PROC MIANALYZE.

2. Methods

2.1. Motivating case study

Our work was motivated by a previously published study investigating choices in breast cancer
care [13]. This dataset was created from electronic medical records of two independent institutions:
an academic medical center and a large multi-site community practice with data sources from
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institutional and state cancer registries. Before statewide cancer registry datawere available (from the
California Cancer Registry, a component of the Surveillance, Epidemiology and End Results Program),
the investigators only had information from the regional cancer registry, with 41.5% of the cohort
missing data on a key variable (Stage: 25.0% missing; Grade: 33.6% missing; Race: 12.4% missing;
Ethnicity: 13.6%missing;). The integration of state cancer registry greatly augmented data completion,
reducing the missing proportion to 27.4% (Stage: 8.3% missing; Grade: 22.1% missing; Race: 1.9%
missing, Ethnicity: 2.0% missing). Because a substantial number of observations were still missing
at least one variable, MI-based analysis was considered.

Investigators were particularly interested in differences in patient characteristics by breast cancer
treatment procedures, including use of mastectomy, chemotherapy, magnetic resonance imaging
(MRI), positron emission tomography (PET), and genetic testing, among patients treated at academic,
community or both institutions. Predictors of interest were age at diagnosis, year of diagnosis, race,
ethnicity, stage, grade, histology, enrollment in a clinical trial, and refusal of treatment. In addition,
synergistic effects among age, year, race and stage on the choice of treatment were of interest. Some
of the variables such as stage and grade have an ordinal nature but the study treated these variables
as nominal because the investigators were interested in the non-linear effect of these variables on the
outcome. Thus, stage was a 5-level (Stages 0–IV) nominal categorical variable and grade was a 3-level
(Grades 1–3) nominal categorical variable. In addition, race had four categories (White, Black, Asian,
Other), ethnicity had two categories (Hispanic, Non-Hispanic), and patient affiliated institution had
three categories (academic, community, both).

2.2. Design of simulation study

We simulated data to resemble the relationships among some of the variables from the breast
cancer data. Five scenarios were considered. In each scenario we varied the number of categories
in the interaction effect. An interaction effect between; (1) two binary variables, (2) one binary and a
3-level categorical variable, (3) two 3-level categorical variables, (4) one binary and 5-level categorical
variable, (5) a 5-level categorical variable and a 3-level categorical variable were considered for
Scenarios 1 through 5, respectively. For each scenario, 1000 datasets eachwith n = 5000 observations
were simulated. For each of the 5 scenarios, we had an outcome that was continuous and an outcome
that was binary. Each dataset included (1) an outcome variable Y (reflecting receipt of mastectomy),
(2) two independent nominal categorical variables X1 (reflecting stage) and X2 (reflecting patient
affiliated institution), their interaction, X1X2, and an auxiliary continuous variable, Z (reflecting age).
We modeled Z to be related to both X1 and X2 such that;

Z = 55 − 4X1 − 3X2 (Scenario 1)
Z = 57 − 3X1 + 2X21 − 1.5X22 (Scenario 2)
Z = 54.5 + 0.1X1.1 + 0.4X1.2 + 6.1X2.1 + 0.5X2.2 (Scenario 3)
Z = 54 + 5.6X1 + 2.6X2.1 − 0.7X2.2 − 1.9X2.3 + 1.0X2.4 + 0.4X1X2.1 (Scenario 4)
Z = 54 + 2.6X1.1 − 0.7X1.2 − 1.9X1.3 + 1.0X1.4 + 5.6X2.1 + 0.4X2.2 (Scenario 5)

where X1.1 = 1 if X1 = 1 and X1.1 = 0 otherwise, and similarly for X1.2, . . . , X2.2.
The binary outcomes were generated from a logistic regression model involving X1, X2, and X1X2

(continuous outcomes used the same linear combination expressed below) such that;
logit(P(Y = 1)) = −1.3 + 1.2X1 + 0.7X2 − 0.6X1X2 (Scenario 1)
logit(P(Y = 1)) = −0.5 − 0.2X1 − 0.1X2.1 + 1X2.2 + 0.1X1X2.1 + 0.2X1X2.2 (Scenario 2)
logit(P(Y = 1)) = 0.2 + 0.5X1.1 + 0.1X1.2 − 0.2X2.1 − 0.5X2.2 − 0.5X1.1X2.1

+ 0.2X1.1X2.2 + 0.15X1.2X2.1 + 0.3X1.2X2.2 (Scenario 3)

logit(P(Y = 1)) = −0.7 − 1.0X1 + 0.9X2.1 + 0.7X2.2 + 2.0X2.3 + 1.7X2.4 − 1.0X1X2.1
− 1.2X1X2.2 + 1.3X1X2.3 − 1.3X1X2.4 (Scenario 4)

logit(P(Y = 1)) = −0.7 + 0.1X1.1 + 0.7X1.2 + 2.0X1.3 + 1.5X1.4 − 0.3X2.1 + 1.0X2.2
− 1.4X1.1X2.1 − 1.2X1.2X2.1 + 1.3X1.3X2.1 − 1.3X1.4X2.1
+ 1.4X1.1X2.2 − 1.4X1.2X2.2 − 1.3X1.3X2.2 − 1.0X1.4X2.2 (Scenario 5).
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Missingness of X1 and X2 were generated under an MAR condition. The logit of probability of
missing for each Xi, i=1,2 was generated as a linear combination of Z such that;

logit(P(X1 is missing)) = −7 + 0.12Z and logit(P(X2 is missing)) = −1 − 0.02Z (Scenario 1)
logit(P(X1 is missing)) = −5 + 0.05Z and logit(P(X2 is missing)) = 0.01 − 0.04Z (Scenario 2)
logit(P(X1 is missing)) = −2.0 + 0.02Z and logit(P(X2 is missing)) = −0.65 − 0.015Z

(Scenarios 3–5).

Both Y and Z were fully observed. The proportion of subjects missing at least one value was set to
40%. In additional simulations, we examined cases in which 20% of subjects were missing at least one
variable (Appendix Table A1).

We considered three imputation approaches under FCSusingR’sMICEpackage: active (FCS ACTIVE),
passive (FCS PASSIVE), and improved passive (FCS IMP PASSIVE). Logistic regression (logreg option)
was used to impute binary variables and multinomial regression or polytomous regression (polyreg
option) was used to impute categorical variables.

When comparing JM versus FCS techniques under active imputation, we considered threemethods:
active imputation under FCS (FCS ACTIVE), active imputation with no rounding under JM (JM ACTIVE),
and active imputation with rounding under JM (JMR ACTIVE). More specifically, for binary variables,
imputed values <0.5 were rounded to 0, and values ≥0.5 were rounded to 1, and for higher order
terms, the rounding method described by Allison was employed [3]. To describe this method briefly,
suppose n − 1 indicator variables are included in a model to represent a categorical variable with n
levels. After calculating the value for the reference category as 1 minus the sum of the n − 1 imputed
values, the category with the highest value is assigned a value of 1 and the remaining categories are
assigned values of 0.

All analyses were based on m = 10 imputations. To evaluate methods, we computed the mean
point estimate, the bias (defined as the difference between the true parameter value and the estimated
value averaged over the simulations), coverage percentage, and mean squared error (MSE). We also
computed the jackknife estimate of the Monte Carlo estimate (MCE) of the MSE as a measure of
variation within each simulation [12]. For simplicity, we focused on properties of the interaction
effects only. JMmethodswere implemented using SAS’s PROCMI and FCSmethodswere implemented
using R’s MICE package.

2.3. Illustrative example using real data from a breast cancer study

To illustrate, we applied each method to the breast cancer data. We used both sets of data to
examine the impact of each MI method with different proportions of missing data. In our example,
we investigated associations between patient characteristics and use of mastectomy. One interaction
effect of particular interest (specified a priori) was that of patient institutional affiliation and stage.
Variables included in the imputation model in addition to the outcome were age, year of diagnosis,
stage, grade, patient institutional affiliation, use of PET, enrollment in clinical trial, receipt of genetic
testing, and an interaction effect between stage and patient institutional affiliation.

3. Results

3.1. Results from simulation study

3.1.1. Active imputation under FCS vs. JM
Fig. 1 shows the MSEs corresponding to each parameter for the interaction terms across five

scenarios when the outcome is continuous for all methods considered. Tables 3a and 3b include
average biases and coverage probabilities for each parameter from the simulation in addition toMSEs,
for continuous and binary outcomes respectively. We first focused our attention on the three ACTIVE
methods under continuous outcomes—active imputation using FCS (FCS ACTIVE), JM (JM ACTIVE) and
JM with rounding (JMR ACTIVE). FCS ACTIVE and JM ACTIVE performed comparably under Scenarios
1–3, while JMR ACTIVE performed worse than the other two. For example, in Scenario 1, where
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Fig. 1. Mean squared errors (MSE) for interaction parameters estimated using each method for Scenarios 1–5 when outcome
is continuous.

there was only one term representing the interaction, the MSE for FCS and JM was 0.007 and 0.006,
respectively (Table 3a). For JMR ACTIVE, on the other hand, the MSE was 0.103. Variability across the
three methods increased for Scenarios 4 and 5 where the number of parameters for the interaction
termwas 4 and 8, respectively (Fig. 1). FCS ACTIVE and JM ACTIVE performed comparably in Scenario 4
and JMR ACTIVE fared considerably worse with more variable performance across the parameters. In
Scenario 5, JM ACTIVE performed relatively consistently across the eight parameters. On the other
hand, we observed variability in MSEs across the parameters under FCS ACTIVE and JMR ACTIVE.
Specifically, theMSEs for the parameters ranged from 0.010 to 0.310 for FCS ACTIVE and from 0.024 to
0.046 for JM ACTIVE, whereas for JMR ACTIVE, the MSEs were higher with a larger variability ranging
from 0.031 to 1.194 (Table 3a). Similar performance was observed with respect to coverage, where
coverage was consistent for JM ACTIVE, more variable for FCS ACTIVE, and poor for JMR ACTIVE. For
example, in Scenario 5, coverage ranged from 92% to 95% for the eight parameters for JM ACTIVE with
at least 90% or greater coverage for all parameters. FCS ACTIVE yielded a range in coverage probabilities
of 3%–96% with at least 90% coverage for only one parameter, and JMR ACTIVE gave a range of 0%–92%
where three parameters had 0% coverage and two had coverage that was at least 90%. These trends
were similar for the binary outcome for both MSE and coverage (Table 3b). To summarize, JM ACTIVE
and FCS ACTIVE gave similar MSEs in Scenarios 1–4, and JM ACTIVE was the favored approach in
Scenario 5, where it yielded a more stable and consistently lower MSEs across the eight parameters.

3.1.2. Active vs. passive imputation under FCS
Under FCS when the outcome was continuous, active (FCS ACTIVE) and passive imputation (FCS

PASSIVE) yielded similar MSEs across parameters for all five scenarios (Fig. 1, Table 3a). For Scenarios
1–3, all three methods – FCS ACTIVE, FCS PASSIVE and FCS IMP PASSIVE – were comparable in terms of
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MSEs. For Scenario 4, however, FCS ACTIVE and FCS PASSIVE presented MSEs that were slightly higher
and more variable than those presented by FCS IMP PASSIVE. In Scenario 5, while FCS ACTIVE and FCS
PASSIVE were comparable, both provided MSEs that were considerably worse than that provided by
FCS IMP PASSIVE, which yielded relatively low MSEs across all eight parameters. In general, coverage
probabilities obtained from FCS IMP PASSIVE were superior to the other two methods. For example,
in Scenario 5, all coverage probabilities were over 90%, ranging from 90% to 94%, whereas coverage
probabilities for FCS PASSIVE ranged from 5% to 98%, with only three of the eight parameters having
coverage probabilities over 90%. Similarly, FCS ACTIVE had a range of coverage probabilities from 3%
to 96%, with only one parameter having coverage over 90%. Similar trends were observed when the
outcomewas binary (Table 3b). In summary, FCS IMP PASSIVE had superior performance over the other
two FCS methods. Performances between FCS ACTIVE and FCS PASSIVE were fairly comparable across
all scenarios.

3.1.3. JM active versus FCS improved passive
Although when using an active approach, JMwas favored over FCS, we had evidence that improved

passive under FCS was superior to active under FCS. This left the question of whether improved passive
under FCS was also superior to active under JM. Directly comparing JM ACTIVE versus FCS IMP PASSIVE
across the 5 scenarios showed that FCS IMP PASSIVE was favored over JM ACTIVE for both continuous
and binary outcomes. For the continuous outcome, the two approacheswere comparable for Scenarios
1–4. When the number of parameters representing the interaction was large as in Scenario 5, FCS
IMP PASSIVE outperformed JM ACTIVE for all parameters. The difference in performance was larger,
however, when the outcome was binary. Improvement in FCS IMP PASSIVE was apparent when the
number of parameters was four or greater as in Scenarios 3–5. The average MCE estimates of the MSE
across the parameters were low – 0.0002, 0.0004, 0.0005, 0.0006, 0.0071 – for Scenarios 1 through 5,
respectively, with continuous outcome, indicating the number of simulations on which we base our
findings was adequate.

3.2. Results from breast cancer study

Prior to the merge with the state cancer registry, the cohort consisted of 8605 women. The
proportion of women missing data was 41.5%. After integrating data from the state cancer registry,
the number of women in the study cohort increased to 12,115. Of those, 27.4% had at least one
missing value. Variables with missing values in the scientific model were race, ethnicity, stage, grade,
histology, and the interaction between stage and patient affiliation. Although stage and grade can
be considered ordinal categorical variables, we treated them as nominal since we were interested in
their non-linear effect on the outcome. Therefore the interaction variable consisted of stage—a 5-level
(Stages 0–IV) nominal categorical variable—and patient affiliation—a 3-level (academic, community-
based, and both) nominal categorical variable. Table 4a shows the adjusted odds ratios (ORs) and 95%
confidence intervals (CIs) corresponding to the interaction effects from the cohort where 27.4% of
subjects were missing at least one variable, and Table 4b shows these results for the cohort where
41.5% are missing.

Based on the recently derived cohort with 27% of subjects missing data (Table 4a), the CC analyses
suggested that patients affiliated with both institutions were significantly more likely to receive mas-
tectomy than patients affiliated with the academic institution across all stages except for the highest
stage category. Among patients with stage I cancer, those affiliated with the community institution
were less likely to receive mastectomy compared to patients affiliated with the academic institution,
but among patients with stage II cancer, community-affiliated patients were more likely to receive
mastectomy. Notable differences were observed between the CC analysis and MI-based analyses in
describing associations between affiliation and mastectomy for stage II and stage IV patients. Specifi-
cally, theOR (95%CI) indicated a 20% increaseduse ofmastectomy for community-affiliated patients of
stage II relative to academic-affiliated patients (OR = 1.20; 95% CI from1.01 to 1.43) in the CC analysis
whereas the MI-based analyses suggested no difference in mastectomy rates between these patients
(for example, OR from FCS ACTIVE = 0.95; 0.74–1.22, OR from FCS PASSIVE = 0.89; 0.69–1.15). Among
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stage IV patients, the CC analysis indicated a non-significant reduction of 50% in use of mastectomy
for community-affiliated patients (OR = 0.50; 0.23–1.08) whereas the MI-based analyses – with the
exception of JMR ACTIVE – suggested a significant reduction in use of mastectomy. Specifically, find-
ings from JM ACTIVE yielded a 61% reduction in use (OR = 0.39, 95% CI from 0.18 to 0.88) and FCS IMP
PASSIVE yielded a 59% reduction in use (OR = 0.41, 95% CI from 0.20 to 0.86). Results from the vari-
ous MI approaches were generally comparable with ORs consistently in the same direction, although
moderate variability was observed. Variability across MI approaches was greater in the cohort with
41.5% missing (Table 4b). For example, among Stage 0 patients, the ORs for those affiliated with both
academic and community institutions ranged from 1.14 (JMR ACTIVE) to 1.96 (FCS IMP PASSIVE) where
some methods suggested a significant increase in the OR for use (JM ACTIVE, FCS PASSIVE and FCS IMP
PASSIVE) but others did not (JMR ACTIVE, FCS ACTIVE). In addition, among Stage III patients, findings
based on JM ACTIVE, JMR ACTIVE, and FCS IMP PASSIVE suggested an increase in use for those affiliated
with a community health center whereas FCS ACTIVE and FCS PASSIVE did not. For example, based on
the analysis from FCS IMP PASSIVE, Stage III patients affiliated with community health center have a
60% increase in mastectomy relative to those at an academic health center, whereas an analysis based
on FCS PASSIVE would conclude that there is no such association between affiliation and mastectomy
among Stage III patients.

Based on our simulation study, we would interpret our findings from the results generated by FCS
IMP PASSIVE. The findings indicated an interesting interaction effect between the type of institution
and stage on receiving a mastectomy (Table 4a). With the exception of Stage IV, those affiliated with
both types of institutions were more likely to receive a mastectomy than those exclusively seen at an
academic institution. In addition, Stage I and Stage IV patients who received their care exclusively at a
community center were less likely than those at an academic health center to receive a mastectomy.

4. Discussion

Through simulations, we characterized variability between active and passive options for perform-
ing MI in the presence of interaction effects involving nominal categorical terms. In the presence of
variability across methods, our goal was to identify the best method for imputing data in the presence
of categorical interaction effects.

We observed comparable performance between active and passive imputation under FCS, and
found improved passive imputation under FCS to be superior to both active and passive approaches
particularly when the number of parameters was large (Scenarios 4 and 5). This was the case for both
continuous and binary outcomes. We also compared JM and FCS techniques under active imputation.
Active imputation under JMwas favored over active imputationwith rounding under JM and over active
imputation under FCS. As in the comparison between active and passive approaches, differences among
methods weremost apparent when the number of parameters was large. Given that active imputation
under JM was the clear winner, we compared this approach to the improved passive approach under
FCS.We found the improved passive approach to be superior to active imputation under JM. Our results
from additional simulation studies where the percentage missing was lower and the outcome was
binary were comparable to our main results. For all methods, the biases were generally smaller when
the proportion of observations with missing was reduced to 20% (see Table A1 in Appendix). Based
on these findings we recommend the use of the improved passive approach using FCS imputation. The
improved passive approach successfully incorporates the relationship between the outcome variable
and each of the main effects, thus getting closer to the ideal but impractical method of stratifying the
imputation by levels of one of the predictors [27,29].

Previously, von Hippel observed active imputation to be less biased than passive imputation when
imputing interaction terms from two binary variables under MCAR setting. We conducted our study
under theMAR setting and found that active and passive imputationswere comparable when imputing
interaction terms from two binary variables. Seaman et al. [21] evaluated improved passive along with
active and passive approaches via simulations under the MAR setting. The authors only examined
interaction effects of two continuous predictors on a continuous outcome. Thus, interest centered on
the casewhere therewas one term representing the interaction effect, whereaswe focused on the case
where multiple terms corresponding to the interaction term are of interest. Seaman et al. found that
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while improved passive reduced bias relative to passive considerably, active produced estimates with
the least bias. Our findings, however, are relevant for multi-level categorical interaction terms. When
one interaction term was of interest, we found the methods to be comparable under MAR. Whereas
we used MSE to gauge performance, Seaman et al. used bias and coverage. Estimates of coverage in
Scenario 1 were comparable to what Seaman et al. obtained. For example, Seaman et al. obtained
coverage estimates of 92%, 94%, and 94% for active, passive, and improved passive, respectively when
the R2 statistic corresponding to the model fit was 0.5. In Scenario 1, we obtained estimates of 95.8%,
90.1% and 93.8%. Because the authors do not provide estimates of the standard errors obtained from
the models, it is difficult to directly compare the performance of methods in their scenarios to the
performance in ours, where we consider both bias and efficiency as important components of judging
performance.

Findings from our simulations confirmed results of previous studies that showed rounding
imputed values post imputation to create categorical variables introduces bias [1,2,9]. In each scenario,
results from active imputation with rounding under JM yielded the largest MSE and the lowest
coverage probability among all methods we evaluated, expect in Scenario 2. We found that using
the unedited imputed values directly performed much better by yielding consistently low MSE and
coverage probabilities above 90.0% across all scenarios.

Our study has some limitations. We did not examine every possible method for multiply imputing
nominal categorical variables and their interaction. Instead we considered methods that required
minimal additional programming, as we wanted our recommendations to apply to those relying on
user-friendly packages. For example, alternative rounding methods such as the calibration technique
proposed by Yucel for binary and categorical variables may also be applied for JM approaches
[30,31]. Demirtas also has proposed rounding strategies for binary variables that utilize information
from other variables in the MI model [6]. Because these methods require the user to program
additional code, we did not consider them, as our focus is on assessing methods readily available
in mainstream software packages. Our study is also limited in the number and types of scenarios we
considered. For example, other MAR conditions could be explored (e.g., where missingness is also
related to the outcome), and possibly also the NMAR condition. Another scenario we did not consider
is onewhere the auxiliary term, Z , is alsomissing or onewhere the outcome variable, Y , is alsomissing.
Whereas we examined a continuous and binary outcome, other non-normal distributions such as the
log-normal may yield different findings. Consequently, the credibility of our results is based solely on
simulations; our findings could possibly exhibit equivocal conclusions with data generated under a
different set of assumptions.

Our simulation study has important strengths. We considered many types of interactions from
simple to complicated categorical variables under a flexible and realistic missing data mechanism
while varying the proportions of missing data. We examined options available in a mainstream
software package that is already fully developed and well used. Other notable programs that perform
FCS include mi and ice functions in Stata, and the fairly new FCS option in SAS PROC MI (available
version 9.3 and after). See Appendix for more details. As far as we know, this is the first paper to
examine active and passive approaches for multi-level categorical interaction terms. Becausemultiple
correlated parameters are involved in such interaction effects, performingMI-based analysis can pose
additional challenges beyond performing MI-based analysis on typical interaction effects that can be
represented with one parameter. In addition, FCS and JM treat interaction effects differently when
multiple terms are involved. Furthermore, numerous choices under FCS are possible. Our study allows
specific recommendations for performing MI in the presence of such complicated interaction terms.

4.1. Recommendations

Based on our study, we recommend implementing improved passive imputation under FCS when
nominal categorical interactions are to be included in the analysis. Our study highlights one of the
barriers of incorporating MI into analyses—that of making additional choices, which can increase the
burden on the user. As a general principle, because different choices may produce variable results,
we highly recommend the use of sensitivity analyses. This may involve including a variety of different
imputation techniques as we presented here (e.g. purely passive or active imputation under FCS and/or
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active imputation under JM), and/or it may involve inclusion of different sets of auxiliary terms.
Presenting a range of results to the readers in the presence of variability may provide insight into
the robustness of the findings.
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