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Abstract
The issue of informative cluster size (ICS) often arises in the analysis of dental data.

ICS describes a situation where the outcome of interest is related to cluster size. Much

of the work on modeling marginal inference in longitudinal studies with potential

ICS has focused on continuous outcomes. However, periodontal disease outcomes,

including clinical attachment loss, are often assessed using ordinal scoring systems.

In addition, participants may lose teeth over the course of the study due to advancing

disease status. Here we develop longitudinal cluster-weighted generalized estimating

equations (CWGEE) to model the association of ordinal clustered longitudinal out-

comes with participant-level health-related covariates, including metabolic syndrome

and smoking status, and potentially decreasing cluster size due to tooth-loss, by fitting

a proportional odds logistic regression model. The within-teeth correlation coefficient

over time is estimated using the two-stage quasi-least squares method. The motiva-

tion for our work stems from the Department of Veterans Affairs Dental Longitudinal

Study in which participants regularly received general and oral health examinations.

In an extensive simulation study, we compare results obtained from CWGEE with var-

ious working correlation structures to those obtained from conventional GEE which

does not account for ICS. Our proposed method yields results with very low bias and

excellent coverage probability in contrast to a conventional generalized estimating

equations approach.

KEYWORDS
clustered data, generalized estimating equations, informative cluster size, longitudinal data, ordinal

outcome, quasi-least squares

1 INTRODUCTION

The use of generalized estimating equations (GEE) to esti-

mate parameters with a marginal interpretation is common in

longitudinal studies (Liang and Zeger, 1986). The repeated

measurements over time within a unit of observation are cor-

related and GEE accounts for the temporal correlation by

use of a working correlation matrix and sandwich variance

estimates. In some longitudinal studies, a unit can belong

to a cluster of units and multiple clusters can exist. In such

cases, two distinct correlations exist: the correlation between

units within the same cluster and the correlation between the

temporal observations on the same unit.

When fitting a marginal model with GEE, one assump-

tion is the independence between cluster size and the outcome

of interest. This assumption is often violated in data aris-

ing from periodontal disease studies. One consequence of

periodontal disease is tooth loss. The probability of losing
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a tooth increases with the severity of the disease, resulting

in fewer teeth (smaller cluster size) among participants who

are more prone to periodontal disease (outcome). This phe-

nomenon, where the outcome of interest is related to the

cluster size, is called informative cluster size (ICS). If the

goal of the study is to describe the population-average effect

of covariates on the outcome measured on a typical tooth

from a randomly selected participant, then conventional GEE

will over-weight healthy teeth and produce biased parameter

estimates (Williamson et al., 2003).

Our motivation stems from the Department of Veterans

Affairs Dental Longitudinal Study (VADLS) (Kapur et al.,

1972). The study investigators collected participant-level

demographics and health outcomes as well as each partic-

ipant’s tooth-level periodontal disease outcomes repeatedly

over time. Clinical attachment loss (CAL) was one of the peri-

odontal disease outcomes. CAL is the distance between the

cementoenamel junction of the tooth and the point on the root

where the gum begins to separate, and was recorded using an

ordinal scoring system with four categories (0: <2mm, 1: 2-

2.9mm, 2: 3-4.9mm, 3: ≥5mm). A higher score, indicating

greater separation between the gum and the root of the tooth,

is considered a worse prognosis of periodontal disease. We

are interested in examining the population-average effect of

participant-level covariates, such as metabolic syndrome and

smoking, on ordinal CAL scores recorded at the tooth-level

over time (Kaye et al., 2016). Here, each tooth (unit) belongs

to a participant (cluster) and the temporal measurements are

obtained for each tooth. The data likely has ICS because par-

ticipants with high overall CAL scores tend to have fewer teeth

at baseline.

ICS is frequently observed in other medical settings. For

example, in a repeated pregnancy study, women who have

experienced an adverse pregnancy outcome may have fewer

subsequent pregnancies (Chaurasia et al., 2018). Hospitals

or surgeons with good reputation may take on higher-risk

patients or more difficult cases and thus experience more

unfavorable outcomes such as post-operative complications

(Panageas et al., 2007). Finally, in a psychological study, the

frequency of depressive episodes by a participant may also be

related to the severity level of each event (Iosif and Sampson,

2014).

Methods to account for ICS have been developed by sev-

eral authors. Within-cluster resampling (WCR) was proposed

by Hoffman et al. (2001) as a method to obtain parameter esti-

mates with marginal interpretations in a cross-sectional study

in which cluster size is informative. WCR involves sampling

one unit (tooth) from each cluster (participant) 𝑄 times with

replacement (𝑄 is large), producing 𝑄 data sets where each

data set contains one randomly selected observation per clus-

ter. Because observations are now independent within each

data set, we can fit a generalized linear model (GLM) to each

data set to describe the relationship between the predictors and

the outcome. The final WCR estimator is computed by tak-

ing the average of the 𝑄 GLM parameter estimates obtained

from each of the 𝑄 data sets. WCR is simple and intuitive but

is computationally intensive and unsuitable for ordinal out-

comes. This is because there is no guarantee that all outcome

categories will be represented in each of the 𝑄 sampled data

sets.

For cross-sectional data with ICS, Williamson et al.

(2003) proposed cluster-weighted GEE (CWGEE) as an alter-

nate method to WCR. CWGEE involves taking the weighted

average, where the weight is the inverse of cluster size, of

the GEE score function during the estimation process while

using an independence working correlation matrix. CWGEE

is asymptotically equivalent to WCR but much more computa-

tionally efficient. Furthermore, unlike WCR, CWGEE can be

applied to ordinal outcomes without any foreseeable issues.

Here, we are interested in modeling the association

between covariates and the longitudinal experience of a typ-

ical tooth from a randomly selected participant. Wang et al.

(2011) extended Williamson et al.’s CWGEE to the longi-

tudinal setting for continuous outcomes, assuming constant

cluster size over time and same number of visits across all par-

ticipants. This longitudinal CWGEE approach also estimates

the within-tooth correlation over time using the two-stage

quasi-least squares (QLS) method (Chaganty, 1997). How-

ever, the assumption of constant cluster size over time is not

realistic in a longitudinal study of periodontal disease because

participants (especially those that are prone to periodontal dis-

ease) will likely lose one or more of their teeth over time.

Indeed, in VADLS, almost half of the participants lose at

least one tooth during follow-up. Bible et al. (2016) further

extended CWGEE to address this issue by including another

set of weights in the CWGEE score function for continuous

outcomes. The additional set of weights is the inverse of the

number of temporal observations made on each unit from each

cluster. Note that in the periodontal disease setting, cluster

size can only decrease over time because an adult tooth loss

is permanent.

Although our article focuses on marginal models, mixed

effects models are also affected by ICS and several authors

have developed remedies. Among them is jointly modeling

the outcome and the distribution of cluster size given the ran-

dom effects and the covariates (Dunson et al., 2003). Seaman

et al. (2014) has a comprehensive review article on methods

for handling clustered data with ICS, and an article comparing

the performance between the joint model approach and WCR

for data with ICS is available by Zhang et al. (2017).

Additional challenges arise when modeling the marginal

association between longitudinal clustered ordinal outcomes

and the covariances in the presence of ICS. When applying the

GEE method to ordinal data, the ordinal responses are trans-

formed into a vector of binary indicators (Lipsitz et al., 1994).

The marginal distribution of the vector of binary indicators



MITANI ET AL. 3

is multinomial and the mean and the variance-covariance

matrix among binary indicators need to be modeled. In addi-

tion, the association parameter within each binary indicator

over the repeated measures need to be estimated in order to

improve the efficiency of GEE. Nooraee et al. (2014) have a

comprehensive review article on GEE for longitudinal ordi-

nal data and compare the relative performance of existing

software packages. None of which, however, is designed to

accommodate data with ICS.

In this article, we focus on clustered longitudinal data,

with potentially decreasing cluster size, that is subject to infor-

mative cluster size when the outcome of interest is an ordinal

categorical variable. In particular, we further develop the

method proposed by Bible et al. (2016) under a proportional

odds logistic regression model framework to accommodate

ordinal outcomes, and use the approach by Parsons et al.

(2006) to construct the correlation matrix among the repeated

responses. In section 2, we describe our proposed CWGEE

approach in more detail. Extensive simulation studies with

results are presented in section 3. In section 4, we apply our

approach and conventional GEE to data from the VADLS.

Finally, the article concludes with a discussion in section 5.

2 METHOD

2.1 Construction of QLS
Consider a longitudinal clustered data set in which units are

grouped into clusters and each unit contributes repeated obser-

vations of unique length. Let 𝑌𝑖𝑗𝑘 be the ordinal outcome

measurement of the 𝑘th visit on the 𝑗th unit from the 𝑖th clus-

ter, where 𝑘 = 1, ..., 𝑡𝑖𝑗 , 𝑗 = 1, ..., 𝑛𝑖 and 𝑖 = 1, ..., 𝑁 . Let 𝒙𝑖𝑗𝑘
be the 𝑝 × 1 vector of covariates for 𝑌𝑖𝑗𝑘. The response 𝑌𝑖𝑗𝑘
is an ordinal score of 𝐶 > 2 categories. Our goal is to fit a

proportional odds logistic regression model to describe the

relationship between the covariates and the ordinal response:

logit{Pr(𝑌𝑖𝑗𝑘 ≤ 𝑐)} = 𝜂𝑐 + 𝒙𝑖𝑗𝑘𝜷, 𝑐 = 1, ..., 𝐶 − 1. (1)

The dependence between the ordinal responses will be incor-

porated in the working correlation matrix. For a proportional

odds model, the ordinal response of𝐶 categories can be trans-

formed into 𝐶 − 1 binary responses such that 𝑈𝑖𝑗𝑘𝑐 = 1 if

𝑌𝑖𝑗𝑘 ≤ 𝑐 and 𝑈𝑖𝑗𝑘𝑐 = 0 if 𝑌𝑖𝑗𝑘 > 𝑐, for 𝑐 = 1, ..., 𝐶 − 1. For

each 𝑘th visit of the 𝑗th unit from the 𝑖th cluster, we have a

response vector 𝑼 ′
𝑖𝑗𝑘

= (𝑈𝑖𝑗𝑘1, ..., 𝑈𝑖𝑗𝑘(𝐶−1)) of length 𝐶 − 1.

Then, equation (1) can be re-expressed as a logistic regression

model for each of the 𝐶 − 1 binary responses (Kenward et al.,

1994):

logit{Pr(𝑈𝑖𝑗𝑘𝑐 = 1)} = 𝜂𝑐 +𝒙𝑖𝑗𝑘𝜷, 𝑐 = 1, ..., 𝐶 −1. (2)

Let 𝜇𝑖𝑗𝑘𝑐 = E(𝑈𝑖𝑗𝑘𝑐) = Pr(𝑌𝑖𝑗𝑘 ≤ 𝑐). Using matrix nota-

tion, we group each of the response vectors of the 𝑗th unit

from the 𝑖th cluster as 𝑼 ′
𝑖𝑗

= (𝑼 ′
𝑖𝑗1, ...,𝑼

′
𝑖𝑗𝑡𝑖𝑗

). Similarly,

let 𝝁𝒊𝒋 = E(𝑼𝑖𝑗), where 𝝁′
𝒊𝒋

= (𝝁′
𝑖𝑗1, ...,𝝁

′
𝑖𝑗𝑡𝑖𝑗

) and 𝝁′
𝑖𝑗𝑘

=
(𝜇𝑖𝑗𝑘1, ..., 𝜇𝑖𝑗𝑘(𝐶−1)). The covariates for the 𝑗th unit from the

𝑖th cluster are represented as 𝑿0𝑖𝑗 = (𝒙𝑖𝑗1, ...,𝒙𝑖𝑗𝑡𝑖𝑗 )
′. The

complete data matrix needs to include the cut points of the

response vector and the covariates. Let 𝟏𝑡𝑖𝑗 and 𝟏𝐶−1 be vec-

tors of 1’s with length 𝑡𝑖𝑗 and 𝐶 − 1 respectively, and let

𝑰𝐶−1 be the identity matrix of dimension 𝐶 − 1. The com-

plete data matrix for the 𝑗th unit from the 𝑖th cluster is

𝑿𝑖𝑗 = (𝟏𝑇𝑖 ⊗ 𝑰𝐶−1,𝑿0𝑖𝑗 ⊗ 𝟏𝐶−1), where ⊗ represents the

Kronecker product (Parsons et al., 2006). Finally, let 𝜷 =
(𝜂1, ..., 𝜂𝐶−1, 𝛽1, ..., 𝛽𝑝) be the (𝐶 − 1+ 𝑝) × 1 vector of coeffi-

cients. Let 𝑽𝑖𝑗 be the diagonal matrix containing the variance

of elements of 𝑼𝑖𝑗 , where var(𝑈𝑖𝑗𝑘𝑐) = 𝜇𝑖𝑗𝑘𝑐(1 − 𝜇𝑖𝑗𝑘𝑐) and

let 𝑹𝑖𝑗 be the matrix of correlations, which is assumed to

be a function of 𝛼, between the elements of 𝑼𝑖𝑗 . Finally, let

𝒁′
𝑖𝑗
= (𝑼𝑖𝑗 − 𝝁𝑖𝑗)′𝑽

−1∕2
𝑖𝑗

. We now construct the generalized

sum of squares for error with two types of weights; cluster

weights (1∕𝑛𝑖𝑗) which is the inverse of cluster size at baseline

for each participant 𝑖, and temporal weights (1∕𝑡𝑖𝑗) which is

the inverse of number of visits made by the 𝑗th tooth of the

𝑖th participant (Wang et al., 2011; Bible et al., 2016):

𝑄𝑊 (𝛼,𝜷) =
𝑁∑
𝑖=1

1
𝑛𝑖

𝑛𝑖∑
𝑗=1

1
𝑡𝑖𝑗

𝒁′
𝑖𝑗
𝑹−1
𝑖𝑗
𝒁𝑖𝑗 = 𝟎. (3)

2.2 Specification of 𝑹𝒊𝒋

We specify 𝑹𝑖𝑗 using the same approach as Parsons et al.

(2006). The matrix𝑹𝑖𝑗 contains the correlation between every

pair of elements in 𝑼𝑖𝑗 . We let 𝑹𝑖𝑗 = 𝑪(𝛼) ⊗ 𝑺, where the

(𝑡𝑖𝑗 − 1) × (𝑡𝑖𝑗 − 1) matrix 𝑪(𝛼) contains the temporal cor-

relations between visits and the (𝐶 − 1) × (𝐶 − 1) matrix 𝑺

contains the correlations between the binary responses within

each visit, such that

𝑪(𝛼) =

⎛⎜⎜⎜⎜⎝
1 𝛼𝑑12 ⋯ 𝛼

𝑑1𝑡𝑖𝑗

𝛼𝑑21 1 ⋮

⋮ ⋱ 𝛼
𝑑𝑡𝑖𝑗−1,𝑡𝑖𝑗

𝛼
𝑑𝑡𝑖𝑗1 ⋯ 𝛼

𝑑𝑡𝑖𝑗 ,𝑡𝑖𝑗−1 1

⎞⎟⎟⎟⎟⎠
,

𝑺 =
⎛⎜⎜⎝

𝜌11 ⋯ 𝜌1(𝐶−1)
⋮ ⋱ ⋮

𝜌(𝐶−1)1 ⋯ 𝜌(𝐶−1)(𝐶−1)

⎞⎟⎟⎠ .
In proportional odds logistic regression models, the correla-

tion between 𝑈𝑖𝑗𝑡𝑐1
and 𝑈𝑖𝑗𝑡𝑐2

for 𝑐1 < 𝑐2 is given by 𝜌𝑐1𝑐2
=

𝜌𝑐2𝑐1
= exp(�̂�𝑐1 − �̂�𝑐2

)1∕2 (Kenward et al., 1994). The first-

order autoregressive (AR1) structure is a popular choice for

modeling the correlation between visits for longitudinal data.
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If 𝑑𝑚𝑛 = |𝑚 − 𝑛|, then 𝑪(𝛼) has an AR1 structure and if all

𝑑𝑚𝑛 = 1, then 𝑪(𝛼) has an exchangeable structure.

2.3 Estimation of 𝜷 and 𝜶

Taking the partial derivative of 𝑄𝑊 (𝛼,𝜷) with respect to 𝜷

and setting it equal to 𝟎, we obtain the CWGEE score function:

𝑁∑
𝑖=1

1
𝑛𝑖

𝑛𝑖∑
𝑗=1

1
𝑡𝑖𝑗

𝑫′
𝑖𝑗
𝑾 −1

𝑖𝑗
(𝑼𝑖𝑗 − 𝝁𝑖𝑗) = 𝟎 (4)

where 𝑫𝑖𝑗 = 𝜕𝝁𝑖𝑗∕𝜕𝜷 and 𝑾𝑖𝑗 = 𝑽
1∕2
𝑖𝑗

𝑹𝑖𝑗𝑽
1∕2
𝑖𝑗

. With the

correct specification of 𝑹𝑖𝑗 , this marginalization has the inter-

pretation of describing a typical longitudinal experience of a

typical unit from a typical cluster (Bible et al., 2016). The

correlation between units within a cluster is accounted for

by the cluster-level weights in equation (4). We still need to

model the correlation structure between visits within a unit to

increase the precision of 𝜷 estimates.

The estimating procedure for 𝛼 has two parts. Similar to

the estimating equation for 𝜷, the stage one estimating equa-

tion for 𝛼 is given by taking the partial derivative of𝑄𝑊 (𝛼,𝜷)
with respect to 𝛼 and setting it equal to 0:

𝑁∑
𝑖=1

1
𝑛𝑖

𝑛𝑖∑
𝑗=1

1
𝑡𝑖𝑗

𝒁′
𝑖𝑗

𝜕𝑹−1
𝑖𝑗

𝜕𝛼
𝒁𝑖𝑗 = 0. (5)

The stage one estimator for 𝛼, however, is asymptotically

biased (Chaganty and Shults, 1999). Therefore, a consistent

stage two estimator for 𝛼 is obtained by solving the following

equation for 𝛼:

𝑁∑
𝑖=1

1
𝑛𝑖

𝑛𝑖∑
𝑗=1

1
𝑡𝑖𝑗
𝑡𝑟𝑎𝑐𝑒

(
𝜕𝑹−1

𝑖𝑗
(𝛼0)

𝜕𝛼0
𝑹𝑖𝑗(𝛼)

)
= 𝟎 (6)

where 𝛼0 is the solution to equation (5). The estimators for

𝜷 and 𝛼 are obtained by choosing a starting value for 𝜷 (typ-

ically from fitting a GLM assuming independence between

observations) and iterating through equations (4), (5) and (6)

until convergence is reached.

2.4 AR1 working correlation structure
If we choose the AR1 structure for 𝑪(𝛼), then equation (5) has

a closed-form solution. The stage one estimator for 𝛼 can be

solved by the following formula:

�̂�0 =
𝐹𝑎 +

√
(𝐹𝑎 + 𝐹𝑏)(𝐹𝑎 − 𝐹𝑏)

𝐹𝑏
(7)

where

𝐹𝑎 =
𝑁∑
𝑖=1

1
𝑛𝑖

𝑛𝑖∑
𝑗=1

1
𝑡𝑖𝑗

⎛⎜⎜⎝
𝑡𝑖𝑗∑
𝑘=1

𝒁′
𝑖𝑗𝑘

𝑺−1𝒁𝑖𝑗𝑘

+
𝑡𝑖𝑗−1∑
𝑘=2

𝒁′
𝑖𝑗𝑘

𝑺−1𝒁𝑖𝑗𝑘

⎞⎟⎟⎠
and

𝐹𝑏 = 2
∑𝑁

𝑖=1
1
𝑛𝑖

∑𝑛𝑖
𝑗=1

1
𝑡𝑖𝑗

∑𝑡𝑖𝑗−1
𝑘=1 𝒁′

𝑖𝑗𝑘
𝑺−1𝒁𝑖𝑗𝑘+1. The stage

two estimator for 𝛼 is given by solving equation (6) which

reduces to:

�̂� =
2�̂�0

1 + �̂�20

. (8)

Details of the derivations for equations (7) and (8) are shown

in the Appendix and Supplementary Material respectively.

2.5 Exchangeable working correlation
structure
If we choose the exchangeable structure, the stage one esti-
mating equation for 𝛼 reduces to

𝑁∑
𝑖=1

1
𝑛𝑖

𝑛𝑖∑
𝑗=1

1
𝑡𝑖𝑗

⎛⎜⎜⎝𝑔𝑎𝑖
𝑡𝑖𝑗∑
𝑘=1

𝒁 ′
𝑖𝑗𝑘
𝑺−1𝒁𝑖𝑗𝑘 − 2𝑔𝑏𝑖

𝑡𝑖𝑗−1∑
𝑘=1

𝑡𝑖𝑗∑
𝑘′=𝑘+1

𝒁 ′
𝑖𝑗𝑘
𝑺−1𝒁𝑖𝑗𝑘′

⎞⎟⎟⎠ = 0

where 𝑔𝑎𝑖 =
𝛼20(𝑡𝑖𝑗−1)(𝑡𝑖𝑗−2)+2𝛼0(𝑡𝑖𝑗−1)[

1+𝛼0(𝑡𝑖𝑗−1)
]2 and 𝑔𝑏𝑖 =

1+𝛼20(𝑡𝑖𝑗−1)[
1+𝛼0(𝑡𝑖𝑗−1)

]2 .
The solution for 𝛼0 can be obtained through a root finding

algorithm. The stage two estimator for 𝛼 is given by

�̂� =
⎡⎢⎢⎣
𝑁∑
𝑖=1

(
1
𝑛𝑖

) (1 − 𝑡𝑖𝑗)
{
𝛼0

2(𝑡𝑖𝑗 − 1) + 1
}{

1 + 𝛼0(𝑡𝑖𝑗 − 1)
}2 ⎤⎥⎥⎦

−1

𝑁∑
𝑖=1

(
1
𝑛𝑖

) (1 − 𝑡𝑖𝑗)𝛼0
{
𝛼0(𝑡𝑖𝑗 − 2) + 2

}{
1 + 𝛼0(𝑡𝑖𝑗 − 1)

}2 .

2.6 Variance-covariance matrix for 𝜷

The robust variance-covariance matrix, 𝚿, for 𝜷 is con-

structed in a similar way as done by Wang et al. (2011) using

the familiar sandwich estimator:

�̂� = �̂�−1�̂��̂�−1 (9)

where

�̂� =
𝑁∑
𝑖=1

1
𝑛𝑖

𝑛𝑖∑
𝑗=1

1
𝑡𝑖𝑗

�̂�′�̂� −1
𝑖𝑗

�̂� (10)
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and

�̂� =
𝑁∑
𝑖=1

{
1
𝑛𝑖

𝑛𝑖∑
𝑗=1

1
𝑡𝑖𝑗

�̂�′�̂� −1
𝑖𝑗

(𝒀𝑖𝑗 − �̂�𝑖𝑗)

}
{

1
𝑛𝑖

𝑛𝑖∑
𝑗=1

1
𝑡𝑖𝑗

�̂�′�̂� −1
𝑖𝑗

(𝒀𝑖𝑗 − �̂�𝑖𝑗)

}′

(11)

The proof for the asymptotic normality of 𝜷 estimated using

CWGEE is provided in the appendix of Williamson et al.

(2003).

An R package to compute our proposed CWGEE is avail-

able for download from the first author’s personal website.

3 SIMULATION STUDY

3.1 Simulating longitudinal clustered ordinal
data with informative cluster size
To simulate longitudinal clustered data with continuous out-

comes, Bible et al. (2016) used a linear mixed effects model

with a random participant-level effect and a random tooth-

level effect. To induce ICS, they let the cluster size per

participant be a function of the random participant-level

effect. However, unlike the linear setting, with an ordinal out-

come, the cluster-specific parameter estimates estimated by

fitting a generalized linear mixed model and the marginal (or

the population-average) parameter estimates estimated using

GEE are not the same (Fitzmaurice et al., 2011). To over-

come this issue, the bridge distribution (Wang and Louis,

2003) was used to obtain the marginal probability of success

when fitting a random intercept logistic regression model of

the form:

𝑝𝑖𝑗𝑘𝑐 = Pr(𝑈𝑖𝑗𝑘𝑐 = 1|𝑏𝑖, 𝑥𝑖𝑗𝑘, 𝜷) = exp(𝑏𝑖 + 𝜙−1𝑥′
𝑖𝑗𝑘

𝜷)

1 + exp(𝑏𝑖 + 𝜙−1𝑥′
𝑖𝑗𝑘

𝜷)
(12)

where 𝑏𝑖 follows a bridge distribution with density 𝑓𝑏(𝑏𝑖|𝜙) =
1
2𝜋

sin(𝜙𝜋)
cosh(𝜙𝑏𝑖)+cos(𝜙𝜋)

,−∞ < 𝑏𝑖 < ∞, 0 < 𝜙 < 1. In equation

(12), 𝜷 has a marginal interpretation, as desired.

We extended the method described by Parzen et al. (2011)

that utilizes a Gaussian copula of the bridge distribution to

simulate temporally correlated clustered ordinal data, 𝑌𝑖𝑗𝑘.

We used the exchangeable correlation structure with param-

eter 𝜏 to generate the correlation between teeth and used

the AR1 correlation structure with parameter 𝛼 to generate

the correlation within a tooth over time. For each participant

𝑖, we computed the baseline hazard 𝜆𝑖 as a function of the

participant-specific set of random effects 𝒃𝑖, which followed

the bridge distribution. The number of teeth for each partici-

pant (𝑛𝑖) was generated from a binomial distribution with size

28 and probability 𝜆𝑖. We also varied the number of tempo-

ral observations made on each tooth 𝑗 of each participant 𝑖

from 2 to 5. Following Bible et al. (2016), the probabilities

of each tooth 𝑗’s number of observations was determined by

𝑛𝑖. A detailed description of how the data was simulated is

presented in Supplementary Material.

The ordinal outcome for the simulation study had 𝐶 = 4
categories. The covariates included a participant-level binary

exposure indicator (𝑥𝑖) with the first half (𝑁∕2) of the par-

ticipants having the exposure, visit number (visit𝑖𝑗𝑘), and the

interaction between exposure and visit. For the 𝑗th tooth of

the 𝑖th participant at the 𝑘th visit, our simulated model had

the form:

logit{Pr(𝑌𝑖𝑗𝑘 ≤ 𝑐)}=𝜂𝑐+𝛽1𝑥𝑖+𝛽2visit𝑖𝑗𝑘+𝛽3𝑥𝑖×visit𝑖𝑗𝑘

𝑐=1, 2, 3. (13)

The true values for the parameters were: (𝜂1 − 𝜂3, 𝛽1 − 𝛽3) =
(1, 2, 3,−0.5, 0.1, 0.5).

We simulated 1,000 data sets for each scenario. We var-

ied the number of participants from small to large (𝑁 =
20, 100, 500). The maximum number of teeth per partici-

pant (𝑚) was set at 28 (maximum total number of teeth in

an adult human excluding the third molars). We also varied

the levels of correlation between teeth (𝜏) and between vis-

its within a tooth (𝛼) from none to high (none: 𝜏 = 0, 𝛼 = 0;

low: 𝜏 = 0.25, 𝛼 = 0.4; medium: 𝜏 = 0.5, 𝛼 = 0.6, high:

𝜏 = 0.75, 𝛼 = 0.8). For each simulated data set, we applied

CWGEE with independence (Ind), AR1, and exchangeable

(Exch) working correlation structures. We also applied GEE

functions from two existing R packages, the ordgee function

in geepack (Hojsgaard et al., 2006) using the independence

working correlation structure (ORDGEE Ind), and the ord-
LORgee function in multgee (Touloumis, 2015) also using

the independence working correlation structure (MULTGEE

Ind).

For each simulation scenario and method, we computed

the mean estimates, the mean robust standard errors (SEs),

the standard deviation (SD) of the 1,000 parameter esti-

mates (a.k.a. empirical SEs), the mean relative biases, and

the coverage probabilities from 95% confidence intervals of

each parameter estimate in equation (13). The relative bias

was obtained by calculating the relative difference between

each of the 1,000 parameter estimates and the respective true

value. The coverage probability was obtained by calculat-

ing the percentage of times the 95% confidence interval for

each of the 1,000 parameter estimates include the respective

true parameter value.

3.2 Simulation results: ICS
Results from the simulation scenarios with informative clus-

ter size with small and medium sample sizes (𝑁 = 20, 100)



6 MITANI ET AL.

and medium levels of correlation (𝜏 = 0.5, 𝛼 = 0.6) are shown

in Table 1. Results from the large sample size (𝑁 = 500) are

presented in Supplementary Material Table 1. The mean esti-

mates, mean SEs, and SDs of the estimates across the three

CWGEE methods were all similar. The difference between

mean SEs and SDs within each method decreased as the sam-

ple size increased. In general, the mean SEs of the CWGEE

methods were slightly larger than the mean SEs of MULTGEE

Ind regardless of sample size. ORDGEE Ind encountered con-

vergence issues. Only 444 simulations out of 1,000 converged

when sample size was small (𝑁 = 20). The convergence rate

did not improve when we relaxed the convergence criteria for

the Fisher-scoring algorithm from the default of 0.0001 to

0.01. Convergence was not an issue with medium and large

sample sizes nor with the other methods using any sample

size. The mean SEs and the SDs of the parameter estimates

from ORDGEE Ind were consistently larger compared to

those from the other methods.

In Figure 1, we depict how sample size and levels of cor-

relation impact coverage probabilities and absolute relative

biases. The vertical axis indicates coverage probability with

the dotted horizontal line representing 95%, and the horizon-

tal axis indicates increasing levels of correlation. The size of

the bubble is proportional to the absolute relative bias (%).

An ideal bubble is small in size and located close to the 95%

line. Because all CWGEE methods performed similarly, we

only show results from CWGEE AR1. In general, the param-

eter estimates from CWGEE AR1 (black) were lowest in bias

and had better coverage probability compared to those from

MULTGEE Ind (white) and ORDGEE Ind (gray) across all

sample sizes and correlation levels. The largest discrepancies

in bias and coverage probability between the methods were

observed in the three cut-off parameters (𝜂1 – 𝜂3). For some

of the parameter estimates (𝜂2, 𝜂3, 𝛽3), CWGEE AR1 suf-

fered lower coverage probabilities, especially when the sam-

ple size was small, but still performed better than the other two

methods.

3.3 Simulation results: No ICS
To evaluate how CWGEE performs for ordinal outcomes

when cluster size is not informative (i.e. outcome is unre-

lated to cluster size), we simulated ordinal data where the

number of teeth for each participant was randomly generated

from a binomial distribution with size 28 and probability 0.75.

Results from the scenario with medium sample size (𝑁 =
100) and medium levels of correlation (𝜏 = 0.5, 𝛼 = 0.6) are

shown in Table 2.

Simulation results from CWGEE were extremely sim-

ilar across all three working correlation matrix structures

(Ind, AR1, Exch). The results from CWGEE Ind were almost

identical to the results from MULTGEE Ind. In general, all

methods exhibited low relative biases and coverage prob-

abilities close to 95%. Importantly, CWGEE methods per-

formed comparably well to non-weighted GEE methods in

the case of no ICS. We observed some discrepancy between

the two non-weighted methods, especially in the mean SEs.

In general, the SEs of ORDGEE Ind were larger than those

of MULTGEE Ind for all parameters. Relative biases and

coverage probabilities for the cut-off estimates were com-

parable between the two methods, but relative biases of 𝛽2
and 𝛽3 estimated by ORDGEE Ind were higher compared

to those estimated by MULTGEE Ind. Coverage probabili-

ties of all the predictors (𝛽1 – 𝛽3) estimated by ORDGEE

Ind were lower compared to those estimated by MULTGEE

Ind.

4 THE DEPARTMENT OF
VETERANS AFFAIRS DENTAL
LONGITUDINAL STUDY (VADLS)

The VADLS was initiated in 1969 as an extension of the Nor-

mative Aging Study (Kapur et al., 1972). Each participant’s

health status was measured approximately every three years.

Baseline medical and dental examinations for these partic-

ipants occurred between 1981 and 2011. We restricted the

analysis to participants who had complete CAL records on all

existing teeth. The total number of participants for our analy-

sis was 456 with a total of 9622 teeth. Over the course of the

study, 245 participants lost at least one tooth, a total of 965

teeth.

The ordinal CAL score has four categories (0–3), where

a higher score indicates a worse prognosis of periodontal

disease. The relationship between baseline number of teeth

and mean CAL score per participant is shown in the left

panel of Figure 2. Participants with a greater number of

teeth at baseline are more likely to have lower mean base-

line CAL and vice versa. The Pearson correlation coefficient

(95% CI) was -0.374 (-0.450, -0.292). There exists a mod-

erately strong indirect association between baseline number

of teeth and mean CAL score per participant, indicating

the presence of ICS in this data set. Because the outcome,

CAL score, is related to cluster size, the use of CWGEE

to account for ICS is appropriate. In the right panel in Fig-

ure 2, we see that as the baseline number of teeth increases,

the maximum number of temporal observations made on

each participant increases as well. Participants with fewer

baseline number of teeth are quicker to lose their existing

teeth compared to those more teeth. This relationship cor-

roborates the use of the second set of weights based on the

number of temporal observations made on each tooth per

participant.
We modeled the association of CAL score as an ordi-

nal variable with visit number, baseline age, smoking sta-
tus (yes/no), metabolic syndrome (MetS) status (yes/no)
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TABLE 1 Simulation results when cluster size is informative (𝑁 = 20, 100, 𝜏 = 0.5, 𝛼 = 0.6)

MULTGEE ORDGEE CWGEE
Parameter Truth Results Ind Ind Ind AR1 Exch

𝑵 = 𝟐𝟎
𝜂1 1 Mean Est 1.688 1.700 1.069 1.067 1.059

Mean SE 0.569 0.891 0.627 0.625 0.621

SD Est 0.613 1.340 0.739 0.736 0.726

Rel Bias (%) 68.8 70.0 6.9 6.7 5.9

Cov Prob (%) 75.4 77.5 88.1 87.8 88.7

𝜂2 2 Mean Est 2.983 2.942 2.223 2.222 2.214

Mean SE 0.610 0.915 0.683 0.681 0.679

SD Est 0.666 1.370 0.834 0.832 0.826

Rel Bias (%) 49.2 47.1 11.1 11.1 10.7

Cov Prob (%) 62.1 73.4 85.9 85.2 86.8

𝜂3 3 Mean Est 4.406 4.199 3.608 3.608 3.604

Mean SE 0.735 0.968 0.815 0.814 0.812

SD Est 0.820 1.388 1.140 1.138 1.136

Rel Bias (%) 46.9 40.0 20.3 20.3 20.1

Cov Prob (%) 53.0 70.3 78.5 78.1 79.0

𝛽1 -0.5 Mean Est -0.693 -0.492 -0.593 -0.585 -0.588

Mean SE 0.863 1.443 0.950 0.950 0.944

SD Est 0.952 5.162 1.113 1.113 1.100

Rel Bias (%) 38.6 -1.6 18.6 17.0 17.6

Cov Prob (%) 90.5 77.4 89.9 89.9 90.5

𝛽2 0.1 Mean Est 0.155 0.245 0.114 0.116 0.120

Mean SE 0.196 0.377 0.225 0.226 0.221

SD Est 0.218 0.611 0.293 0.291 0.284

Rel Bias (%) 55.1 145.2 13.6 15.7 20.5

Cov Prob (%) 89.5 76.4 84.6 85.1 84.8

𝛽3 0.5 Mean Est 0.710 0.892 0.633 0.629 0.630

Mean SE 0.371 0.655 0.412 0.418 0.414

SD Est 0.431 1.994 0.558 0.565 0.556

Rel Bias (%) 42.0 78.4 26.6 25.9 26.0

Cov Prob (%) 86.9 73.1 84.4 85.1 85.7

Convergence rate (%) 100.0 44.4 100.0 100.0 100.0

𝑵 = 𝟏𝟎𝟎
𝜂1 1 Mean Est 1.742 1.662 1.044 1.035 1.033

Mean SE 0.272 0.506 0.316 0.309 0.304

SD Est 0.275 0.592 0.330 0.323 0.317

Rel Bias (%) 74.2 66.2 4.4 3.5 3.3

Cov Prob (%) 23.6 70.5 92.9 93.2 93.1

𝜂2 2 Mean Est 2.998 2.919 2.066 2.057 2.056

Mean SE 0.293 0.515 0.3.05 0.345 0.341

SD Est 0.296 0.600 0.369 0.363 0.360

Rel Bias (%) 49.9 46.0 3.3 2.9 2.8

Cov Prob (%) 8.5 56.1 92.3 92.8 92.7

𝜂3 3 Mean Est 4.318 4.245 3.127 3.121 3.121

Mean SE 0.344 0.544 0.431 0.428 0.427

SD Est 0.350 0.623 0.475 0.471 0.472

Rel Bias (%) 43.9 41.5 4.2 4.0 4.0

Cov Prob (%) 2.6 37.9 90.2 90.3 90.3

𝛽1 -0.5 Mean Est -0.723 -0.844 -0.517 -0.513 -0.517

Mean SE 0.412 0.905 0.476 0.465 0.460

SD Est 0.418 1.034 0.502 0.483 0.478

(Continues)
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TABLE 1 (Continued)

MULTGEE ORDGEE CWGEE
Parameter Truth Results Ind Ind Ind AR1 Exch

Rel Bias (%) 44.6 68.7 3.4 2.6 3.5

Cov Prob (%) 91.0 89.1 93.6 93.9 94.1

𝛽2 0.1 Mean Est 0.136 0.200 0.082 0.088 0.09

Mean SE 0.096 0.235 0.120 0.116 0.112

SD Est 0.097 0.281 0.129 0.125 0.120

Rel Bias (%) 35.7 100.2 -18.3 -12.5 -10.2

Cov Prob (%) 92.8 90.5 92.0 92.9 92.5

𝛽3 0.5 Mean Est 0.689 0.819 0.525 0.523 0.525

Mean SE 0.180 0.531 0.216 0.214 0.209

SD Est 0.184 0.668 0.234 0.225 0.220

Rel Bias (%) 37.9 63.7 5.0 4.6 5.1

Cov Prob (%) 82.7 88.1 92.2 93.8 93.1

Convergence rate (%) 100.0 98.0 100.0 100.0 100.0

FIGURE 1 Coverage probability and absolute relative bias of all parameters by sample size and correlation for three models, MULTGEE Ind,

ORDGEE Ind, CWGEE AR1 (proposed method) from simulation study. Correlation (𝜏 is the correlation parameter between teeth and 𝛼 is the correla-

tion parameter over time within a tooth): none (𝜏 = 0, 𝛼 = 0); low (𝜏 = 0.25, 𝛼 = 0.4); med (𝜏 = 0.5, 𝛼 = 0.6); high (𝜏 = 0.75, 𝛼 = 0.8). Parameters:

𝜂1 − 𝜂3, 𝛽1 − 𝛽3.
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TABLE 2 Simulation results when cluster size is not informative (𝑁 = 100, 𝜏 = 0.5, 𝛼 = 0.6)

MULTGEE ORDGEE CWGEE
Parameter Truth Results Ind Ind Ind AR1 Exch
𝜂1 1 Mean Est 0.990 0.990 0.990 0.990 0.990

Mean SE 0.240 0.310 0.240 0.240 0.240

SD Est 0.240 0.370 0.240 0.250 0.240

Rel Bias (%) -1.1 -1.4 -0.9 -0.8 -0.9

Cov Prob (%) 94.8 87.4 94.4 94.1 94.5

𝜂2 2 Mean Est 2.000 2.000 2.000 2.000 2.000

Mean SE 0.260 0.320 0.260 0.260 0.260

SD Est 0.270 0.390 0.270 0.270 0.270

Rel Bias (%) 0.0 -0.1 0.1 0.1 0.1

Cov Prob (%) 93.6 87.3 93.3 93.4 93.7

𝜂3 3 Mean Est 3.020 3.020 3.020 3.020 3.020

Mean SE 0.310 0.350 0.310 0.310 0.310

SD Est 0.320 0.430 0.320 0.330 0.320

Rel Bias (%) 0.6 0.7 0.6 0.7 0.6

Cov Prob (%) 93.0 88.2 92.7 92.4 92.5

𝛽1 -0.5 Mean Est -0.490 -0.510 -0.490 -0.490 -0.490

Mean SE 0.350 0.510 0.350 0.350 0.350

SD Est 0.350 0.630 0.350 0.350 0.350

Rel Bias (%) -1.2 1.0 -1.2 -1.0 -1.0

Cov Prob (%) 94.7 88.0 94.2 93.9 94.3

𝛽2 0.1 Mean Est 0.110 0.120 0.110 0.110 0.110

Mean SE 0.070 0.110 0.070 0.070 0.070

SD Est 0.080 0.140 0.080 0.080 0.080

Rel Bias (%) 8.7 18.1 8.5 7.8 8.3

Cov Prob (%) 92.7 88.3 92.6 92.5 92.7

𝛽3 0.5 Mean Est 0.500 0.520 0.500 0.500 0.500

Mean SE 0.130 0.220 0.130 0.130 0.130

SD Est 0.140 0.280 0.140 0.140 0.140

Rel Bias (%) 0.2 4.9 0.1 0.3 0.3

Cov Prob (%) 92.0 88.5 92.2 92.2 92.9

Convergence rate (%) 100.0 100.0 100.0 100.0 100.0

as defined by the National Cholesterol Education Program
Adult Treatment Panel III criteria (Kaye et al., 2016),
education-level (college degree or higher/none) and the
interaction between visit and each of the aforementioned
covariates:

logit{Pr(CAL𝑖𝑗𝑘 ≤ 𝑐)} = 𝜂𝑐 + 𝛽1visit𝑖𝑗𝑘 + 𝛽2age𝑖 + 𝛽3smoke𝑖

+ 𝛽4MetS𝑖 + 𝛽5education𝑖 + 𝛽6age𝑖 × visit𝑖𝑗𝑘

+ 𝛽7smoke𝑖 × visit𝑖𝑗𝑘 + 𝛽8MetS𝑖 × visit𝑖𝑗𝑘

+ 𝛽9education𝑖 × visit𝑖𝑗𝑘

where 𝑐 = 0, 1, 2 and the probabilities modeled are cumu-

lated over the lower (healthier) scores. Results from the

analysis are presented in Table 3. As anticipated from the

simulation study in Section 3, the results from the three

CWGEEs (Ind, AR1, Exch) were similar. The interaction

between visit and smoking was statistically significant at

the 0.05 level of significance in CWGEE Ind (𝑝 = 0.034),

CWGEE AR1 (𝑝 = 0.023), and CWGEE Exch (𝑝 = 0.008)

but not in MULTGEE Ind (𝑝 = 0.123) and ORDGEE Ind

(𝑝 = 0.279). Based on the simulation study and the data

structure, we feel most appropriate to interpret the results from

CWGEE AR1. Holding other variables constant, the odds

ratio of smokers and non-smokers having a healthier CAL

score over each consecutive visit are 0.951 and 1.088 respec-

tively, indicating that smokers are more likely to experience

worse prognosis of periodontal disease over time compared to

non-smokers.

5 DISCUSSION

In this article, we developed a longitudinal CWGEE to model

ordinal categorical outcomes, which extends a method pro-

posed by Bible et al. (2016) for continuous outcomes. The

study of ordinal outcomes raises a unique set of challenges

beyond continuous outcomes. Our research is an important

contribution to the current literature of ICS because many

clinical outcomes that are potentially associated with cluster

size are measured using an ordinal scoring system, including

dental studies and patient-satisfactory surveys. Thus far, much
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FIGURE 2 Left Panel: Relationship between number of teeth and mean clinical attachment loss (CAL) score (0: <2mm, 1: 2-2.9mm, 2: 3-4.9mm,

3: ≥5mm) at baseline per participant from Dapartment of Veterans Affairs Longitudinal Dental Study (𝑁 = 456). Right Panel: Relationship between

number of teeth at baseline and maximum number of temporal observation made on each participant’s tooth.

of the work on modeling marginal inference in clustered lon-

gitudinal studies with potential ICS has focused on continuous

outcomes.

In our simulation study, we did not observe notice-

able differences in relative biases and coverage probabilities

between various choices of the working correlation structure

within the proposed CWGEE approach. This is in agreement

with the simulation results for continuous outcomes from

Wang et al. (2011) and Bible et al. (2016). We observed a

considerable improvement in bias and coverage probability

when using CWGEE instead of conventional GEE to ana-

lyze data with ICS. When no ICS is present, the results from

CWGEE methods were comparable to the results from con-

ventional GEE methods. This was also observed in the results

from Wang et al. (2011) and we feel comfortable analyzing

data with any degree of ICS using the proposed CWGEE

method.

We observed an underestimation of the SEs using the

sandwich estimators for the small sample size scenario in

our simulation study. This is a recognized problem in GEE

and several authors have developed adjustments. We applied

the degrees of freedom (DF) correction proposed by MacK-

innon and White (1985) and observed a closer agreement

between the DF-corrected SEs and the empirical SEs, and

TABLE 3 Results from the analysis of VA Dental Longitudinal Study showing coefficient estimates (SEs), 𝑁 = 456
MULTGEE ORDGEE CWGEE

Variable Ind Ind Ind AR1 Exch
Int 1 1.949 (0.528) 1.908 (0.700) 2.038 (0.688) 2.022 (0.703) 1.922 (0.665)

Int 2 3.139 (0.530) 3.099 (0.701) 3.169 (0.692) 3.142 (0.708) 3.046 (0.670)

Int 3 4.082 (0.533) 4.053 (0.705) 4.052 (0.695) 4.014 (0.713) 3.918 (0.675)

Visit 0.109 (0.179) 0.073 (0.224) 0.080 (0.189) 0.084 (0.185) 0.106 (0.162)

Age -0.030 (0.009) -0.030 (0.011) -0.035 (0.011) -0.034 (0.011) -0.032 (0.011)

Smoking 0.033 (0.221) 0.022 (0.293) -0.012 (0.232) 0.023 (0.228) 0.085 (0.218)

MetS -0.274 (0.122) -0.251 (0.161) -0.343 (0.150) -0.314 (0.143) -0.311 (0.138)

Education 0.420 (0.134) 0.505 (0.159) 0.389 (0.178) 0.373 (0.180) 0.366 (0.170)

Visit × Age -0.004 (0.003) -0.004 (0.004) -0.004 (0.003) -0.004 (0.003) -0.005 (0.003)

Visit × Smoking -0.147 (0.095) -0.138 (0.128) -0.152 (0.083) -0.157 (0.079) -0.175 (0.074)

Visit × MetS 0.053 (0.038) 0.047 (0.052) 0.069 (0.041) 0.063 (0.038) 0.062 (0.035)

Visit × Education 0.008 (0.042) 0.017 (0.057) 0.035 (0.046) 0.040 (0.045) 0.048 (0.039)
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also an improvement in coverage probabilities for small num-

ber of clusters (20 and 50). When number of clusters was

greater than 100, the DF-corrected SEs were comparable to

the uncorrected SEs.

We set the maximum cluster size to be 28 in our simu-

lations to closely resemble a dental study. However, maxi-

mum cluster size may be much smaller in other applications.

To investigate the performance of the proposed CWGEE

approach on smaller cluster size, we conducted additional

simulations of maximum cluster sizes equal to 3, 5, and 10 for

number of clusters of 100 and 500. The difference in perfor-

mance between the proposed CWGEE and unweighted GEEs

is more apparent when cluster sizes are larger because the

degree of informative cluster size is stronger with larger clus-

ter size but we did not observe convergence issues or reduction

in performance on parameter estimation with our proposed

model when maximum cluster size is small. The additional

simulation results are presented in Supplementary Material.

Our approach to directly estimate the correlation structure

between visits within a unit adheres closely to the approach

described by Shults and Ardythe (2002) when implementing

the method of QLS. An alternative approach to model the

association between ordinal observations is to use the global

odds ratio (Williamson et al., 1995) or the local odds ratio

(Touloumis et al., 2013) parameterization. However, none of

these approaches have yet been developed for use in QLS esti-

mation. Although the odds ratio is a more natural measure of

association and is subject to less constraints for categorical

variables compared to the correlation coefficient (Shults and

Hilbe, 2014), in our article, we decided to treat the association

parameter as a “nuisance” because our focus lies in estimating

the association between the ordinal outcome and its predic-

tors and not in estimating the measure of temporal association

between the ordinal observations. We obtained good results

in bias and coverage probability from our simulation studies

with a diverse range of correlations for both intra-teeth and

inter-teeth association in situations when ICS is present and

absent. Nonetheless, comparing the performance of CWGEE

based on global or local odds ratios is a future topic of interest.
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Appendix
Derivation of equation (7) in Section 2.4
If 𝑪𝑖𝑗(𝛼) is an first-order autoregressive (AR1) structure,

𝑪𝑖𝑗(𝛼) =

⎛⎜⎜⎜⎜⎜⎝

1 𝛼 𝛼2 ⋯ 𝛼𝑡𝑖𝑗−1

𝛼 1 𝛼 ⋱ 𝛼𝑡𝑖𝑗−2

𝛼2 𝛼 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 1 𝛼

𝛼𝑡𝑖𝑗−1 ⋯ 𝛼2 𝛼 1

⎞⎟⎟⎟⎟⎟⎠
and

𝑪(𝛼)−1 = 1
1 − 𝛼2

⎛⎜⎜⎜⎜⎜⎝

1 −𝛼 0 ⋯ 0
−𝛼 1 + 𝛼2 −𝛼 ⋱ ⋮
0 −𝛼 ⋱ ⋱ 0
⋮ ⋱ ⋱ 1 + 𝛼2 −𝛼
0 ⋯ 0 −𝛼 1

⎞⎟⎟⎟⎟⎟⎠
.

Then,

𝑹𝑖𝑗(𝛼)−1 = 𝑪𝑖𝑗(𝛼)−1 ⊗ 𝑺−1 = 1
1 − 𝛼2

×

⎛⎜⎜⎜⎜⎝
𝑺−1 −𝛼𝑺−1 0 ⋯ 0

−𝛼𝑺−1 (1 + 𝛼2)𝑺−1 −𝛼𝑺−1 ⋱ ⋮
0 −𝛼𝑺−1 ⋱ ⋱ 0
⋮ ⋱ ⋱ (1 + 𝛼2)𝑺−1 −𝛼𝑺−1

0 ⋯ 0 −𝛼𝑺−1 𝑺−1

⎞⎟⎟⎟⎟⎠
.

Because 𝑺−1 is free of 𝛼,

𝜕𝑹𝑖𝑗 (𝛼)−1

𝜕𝛼
=

𝜕𝑪𝑖𝑗 (𝛼)−1

𝜕𝛼
⊗ 𝑺−1 = 1

(1 − 𝛼2)2⎛⎜⎜⎜⎜⎜⎜⎝

2𝛼𝑺−1 −(1+𝛼2)𝑺−1 0 ⋯ 0
−(1+𝛼2)𝑺−1 4𝛼𝑺−1 −(1+𝛼2)𝑺−1 ⋱ ⋮

0 −(1+𝛼2)𝑺−1 ⋱ ⋱ 0
⋮ ⋱ ⋱ 4𝛼𝑺−1 −(1+𝛼2)𝑺−1

0 ⋯ 0 −(1+𝛼2)𝑺−1 2𝛼𝑺−1

⎞⎟⎟⎟⎟⎟⎟⎠
.

Then, equation (5) is equivalent to

𝑁∑
𝑖=1

1
𝑛𝑖

𝑛𝑖∑
𝑗=1

1
𝑡𝑖𝑗

[
𝛼𝑆1 − (1 + 𝛼2)𝑆2

]
where

𝑆1 =
𝑡𝑖𝑗∑
𝑘=1

𝒁′
𝑖𝑗𝑘

𝑺−1𝒁𝑖𝑗𝑘 +
𝑡𝑖𝑗−1∑
𝑘=2

𝒁′
𝑖𝑗𝑘

𝑺−1𝒁𝑖𝑗𝑘,

𝑆2 =
𝑡𝑖𝑗−1∑
𝑘=1

𝒁′
𝑖𝑗𝑘

𝑺−1𝒁𝑖𝑗𝑘+1.

We can rearrange the above equation to

𝛼2
𝑁∑
𝑖=1

1
𝑛𝑖

𝑛𝑖∑
𝑗=1

1
𝑡𝑖𝑗
𝑆2 − 𝛼

𝑁∑
𝑖=1

1
𝑛𝑖

𝑛𝑖∑
𝑗=1

1
𝑡𝑖𝑗
𝑆1+

𝑁∑
𝑖=1

1
𝑛𝑖

𝑛𝑖∑
𝑗=1

1
𝑡𝑖𝑗
𝑆2 =0

and solve for 𝛼 using the quadratic formula, yielding equa-

tion (7).
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